Int J Cardiol
August 2021
Eur J Nucl Med Mol Imaging
September 2007
Purpose: The aim of the present study was to evaluate the quantitative and qualitative accuracy of 3D PET acquisitions for myocardial FDG studies.
Methods: Phantom studies were performed with both a homogeneous and an inhomogeneous phantom. Activity profiles were generated along the phantoms using 2D and several 3D reconstructions, varying the 3D scaling value to adjust the scatter correction algorithm.
Purpose: Although resynchronisation therapy (CRT) is a promising addition to heart failure therapy, a substantial number of patients do not respond to CRT. As FDG PET has routinely been used for prediction of improvement after revascularisation in ischaemic cardiomyopathy, it was hypothesised that there is also a relationship between the extent of viable tissue and improvement as a result of CRT.
Methods: Thirty-nine patients with ischaemic cardiomyopathy (ejection fraction 27 +/- 9%) and a wide QRS complex underwent temporary pacing to determine the optimal pacing combination, i.
Background: The water-perfusable tissue index (PTI) is assumed to differentiate viable myocardium from scar tissue, but histological comparisons in humans are lacking. The present study compares PTI with delayed contrast-enhanced magnetic resonance imaging (DCE-MRI), a validated marker of fibrotic tissue, in patients with ischemic left ventricular (LV) dysfunction. In addition, the optimal PTI threshold for detection of myocardial viability was defined when DCE-MRI was taken as a reference.
View Article and Find Full Text PDFUnlabelled: The aim of this work was to compare the quantitative accuracy of iteratively reconstructed cardiac (18)F-FDG PET with that of filtered backprojection for both 2-dimensional (2D) and 3-dimensional (3D) acquisitions and to establish an optimal procedure for imaging myocardial viability with (18)F-FDG PET.
Methods: Eight patients underwent dynamic cardiac (18)F-FDG PET using an interleaved 2D/3D scan protocol, enabling comparison of 2D and 3D acquisitions within the same patient and study. A 10-min transmission scan was followed by a 10-min, 25-frame dynamic 3D scan and then by a series of 10 alternating 5-min 3D and 2D scans.
Unlabelled: The aim of the present study was to evaluate the effect of postinjection transmission scanning (Post-Tx) on both the qualitative interpretation and the quantitative analysis of cardiac (18)F-FDG PET images. Furthermore, the accuracy of 2 different methods to correct for emission contamination was studied. An additional aim of this study was to compare images reconstructed with both standard filtered backprojection (FBP) and an iterative reconstruction algorithm (ordered-subset maximization expectation [OSEM]).
View Article and Find Full Text PDFObjectives: We sought to compare contrast-enhanced magnetic resonance imaging (ceMRI) with nuclear metabolic imaging for the assessment of myocardial viability in patients with chronic ischemic heart disease and left ventricular (LV) dysfunction.
Background: Contrast-enhanced MRI has been shown to identify scar tissue in ischemically damaged myocardium.
Methods: Twenty-six patients with chronic coronary artery disease and LV dysfunction (mean ejection fraction 31 +/- 11%) underwent (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET), technetium-99m tetrofosmin single-photon emission computed tomography (SPECT), and ceMRI.
Sampling of arterialised venous blood (AVB) is often used as an alternative to sampling of arterial blood when determining the myocardial metabolic rate of glucose (MRGlu). This method, however, has not yet been validated for measurement of plasma fluorine-18 fluorodeoxyglucose (FDG) activity during a euglycaemic-hyperinsulinaemic clamp (EHC). In this study, dynamic FDG scans were performed with arterial blood sampling during EHC.
View Article and Find Full Text PDF