Understanding how biological visual systems process information is challenging because of the nonlinear relationship between visual input and neuronal responses. Artificial neural networks allow computational neuroscientists to create predictive models that connect biological and machine vision. Machine learning has benefited tremendously from benchmarks that compare different model on the same task under standardized conditions.
View Article and Find Full Text PDFCoordinated activity in neural populations is crucial for information processing. Shedding light on the multivariate dependencies that shape multineuronal responses is important to understand neural codes. However, existing approaches based on pairwise linear correlations are inadequate at capturing complicated interaction patterns and miss features that shape aspects of the population function.
View Article and Find Full Text PDFRecordings of complex neural population responses provide a unique opportunity for advancing our understanding of neural information processing at multiple scales and improving performance of brain computer interfaces. However, most existing analytical techniques fall short of capturing the complexity of interactions within the concerted population activity. Vine copula-based approaches have shown to be successful at addressing complex high-order dependencies within the population, disentangled from the single-neuron statistics.
View Article and Find Full Text PDFOne of the main goals of current systems neuroscience is to understand how neuronal populations integrate sensory information to inform behavior. However, estimating stimulus or behavioral information that is encoded in high-dimensional neuronal populations is challenging. We propose a method based on parametric copulas which allows modeling joint distributions of neuronal and behavioral variables characterized by different statistics and timescales.
View Article and Find Full Text PDFCurr Opin Neurobiol
October 2021
Modern recording technologies now enable simultaneous recording from large numbers of neurons. This has driven the development of new statistical models for analyzing and interpreting neural population activity. Here, we provide a broad overview of recent developments in this area.
View Article and Find Full Text PDFNeuronal circuits formed in the brain are complex with intricate connection patterns. Such complexity is also observed in the retina with a relatively simple neuronal circuit. A retinal ganglion cell (GC) receives excitatory inputs from neurons in previous layers as driving forces to fire spikes.
View Article and Find Full Text PDFThe brainstem plays a crucial role in sleep-wake regulation. However, the ensemble dynamics underlying sleep regulation remain poorly understood. Here, we show slow, state-predictive brainstem ensemble dynamics and state-dependent interactions between the brainstem and the hippocampus in mice.
View Article and Find Full Text PDFA fundamental and recurrent question in systems neuroscience is that of assessing what variables are encoded by a given population of neurons. Such assessments are often challenging because neurons in one brain area may encode multiple variables, and because neuronal representations might be categorical or non-categorical. These issues are particularly pertinent to the representation of decision variables in the orbitofrontal cortex (OFC)-an area implicated in economic choices.
View Article and Find Full Text PDFEstimation of mutual information between random variables has become crucial in a range of fields, from physics to neuroscience to finance. Estimating information accurately over a wide range of conditions relies on the development of flexible methods to describe statistical dependencies among variables, without imposing potentially invalid assumptions on the data. Such methods are needed in cases that lack prior knowledge of their statistical properties and that have limited sample numbers.
View Article and Find Full Text PDFNeurons in sensory systems often pool inputs over arrays of presynaptic cells, giving rise to functional subunits inside a neuron's receptive field. The organization of these subunits provides a signature of the neuron's presynaptic functional connectivity and determines how the neuron integrates sensory stimuli. Here we introduce the method of spike-triggered non-negative matrix factorization for detecting the layout of subunits within a neuron's receptive field.
View Article and Find Full Text PDFAdvances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time.
View Article and Find Full Text PDFWe develop a novel methodology for the single-trial analysis of multichannel time-varying neuroimaging signals. We introduce the space-by-time M/EEG decomposition, based on Non-negative Matrix Factorization (NMF), which describes single-trial M/EEG signals using a set of non-negative spatial and temporal components that are linearly combined with signed scalar activation coefficients. We illustrate the effectiveness of the proposed approach on an EEG dataset recorded during the performance of a visual categorization task.
View Article and Find Full Text PDFPLoS Comput Biol
October 2012
Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each condition is rather small.
View Article and Find Full Text PDFSimultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales, however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We present an alternative that is based on copulas and can account for arbitrary marginal distributions, including Poisson and negative binomial distributions as well as second and higher-order interactions.
View Article and Find Full Text PDF