Publications by authors named "Arno Alpi"

The yeast glucose-induced degradation-deficient (GID) E3 ubiquitin ligase forms a suite of complexes with interchangeable receptors that selectively recruit N-terminal degron motifs of metabolic enzyme substrates. The orthologous higher eukaryotic C-terminal to LisH (CTLH) E3 complex has been proposed to also recognize substrates through an alternative subunit, WDR26, which promotes the formation of supramolecular CTLH E3 assemblies. Here, we discover that human WDR26 binds the metabolic enzyme nicotinamide/nicotinic-acid-mononucleotide-adenylyltransferase 1 (NMNAT1) and mediates its CTLH E3-dependent ubiquitylation independently of canonical GID/CTLH E3-family substrate receptors.

View Article and Find Full Text PDF

Patients with Skraban-Deardorff syndrome (SKDEAS), a neurodevelopmental syndrome associated with a spectrum of developmental and intellectual delays and disabilities, harbor diverse mutations in WDR26, encoding a subunit of the multiprotein CTLH E3 ubiquitin ligase complex. Structural studies revealed that homodimers of WDR26 bridge two core-CTLH E3 complexes to generate giant, hollow oval-shaped supramolecular CTLH E3 assemblies. Additionally, WDR26 mediates CTLH E3 complex binding to subunit YPEL5 and functions as substrate receptor for the transcriptional repressor HBP1.

View Article and Find Full Text PDF

Ubiquitylation is catalyzed by coordinated actions of E3 and E2 enzymes. Molecular principles governing many important E3-E2 partnerships remain unknown, including those for RING-family GID/CTLH E3 ubiquitin ligases and their dedicated E2, Ubc8/UBE2H (yeast/human nomenclature). GID/CTLH-Ubc8/UBE2H-mediated ubiquitylation regulates biological processes ranging from yeast metabolic signaling to human development.

View Article and Find Full Text PDF

Protein ubiquitylation typically involves isopeptide bond formation between the C-terminus of ubiquitin to the side-chain amino group on Lys residues. However, several ubiquitin ligases (E3s) have recently been identified that ubiquitylate proteins on non-Lys residues. For instance, HOIL-1 belongs to the RING-in-between RING (RBR) class of E3s and has an established role in Ser ubiquitylation.

View Article and Find Full Text PDF

The development of haematopoietic stem cells into mature erythrocytes - erythropoiesis - is a controlled process characterized by cellular reorganization and drastic reshaping of the proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and haematological malignancies. Although the ubiquitin system is a known crucial post-translational regulator in erythropoiesis, how the erythrocyte is reshaped by the ubiquitin system is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • * Structural and biochemical analyses demonstrate how ARIH2 is autoinhibited but becomes activated when partnered with CUL5-RBX2, highlighting cullin-specific regulatory mechanisms dictated by NEDD8.
  • * The findings indicate that NEDD8 promotes structural changes in CUL5 that reveal hidden binding sites for ARIH2, suggesting that this allosteric regulation of protein interactions could be leveraged for therapeutic advancements.
View Article and Find Full Text PDF

The ubiquitin system is an important part of the host cellular defense program during bacterial infection. This is in particular evident for a number of bacteria including Salmonella Typhimurium and Mycobacterium tuberculosis which-inventively as part of their invasion strategy or accidentally upon rupture of seized host endomembranes-become exposed to the host cytosol. Ubiquitylation is involved in the detection and clearance of these bacteria as well as in the activation of innate immune and inflammatory signaling.

View Article and Find Full Text PDF

How are E3 ubiquitin ligases configured to match substrate quaternary structures? Here, by studying the yeast GID complex (mutation of which causes deficiency in glucose-induced degradation of gluconeogenic enzymes), we discover supramolecular chelate assembly as an E3 ligase strategy for targeting an oligomeric substrate. Cryoelectron microscopy (cryo-EM) structures show that, to bind the tetrameric substrate fructose-1,6-bisphosphatase (Fbp1), two minimally functional GID E3s assemble into the 20-protein Chelator-GID, which resembles an organometallic supramolecular chelate. The Chelator-GID assembly avidly binds multiple Fbp1 degrons so that multiple Fbp1 protomers are simultaneously ubiquitylated at lysines near the allosteric and substrate binding sites.

View Article and Find Full Text PDF

Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34 HSPCs.

View Article and Find Full Text PDF

The histone mark H3K27me3 and its reader/writer polycomb repressive complex 2 (PRC2) mediate widespread transcriptional repression in stem and progenitor cells. Mechanisms that regulate this activity are critical for hematopoietic development but are poorly understood. Here we show that the E3 ubiquitin ligase F-box only protein 11 (FBXO11) relieves PRC2-mediated repression during erythroid maturation by targeting its newly identified substrate bromo adjacent homology domain-containing 1 (BAHD1), an H3K27me3 reader that recruits transcriptional corepressors.

View Article and Find Full Text PDF

Cells respond to environmental changes by toggling metabolic pathways, preparing for homeostasis, and anticipating future stresses. For example, in Saccharomyces cerevisiae, carbon stress-induced gluconeogenesis is terminated upon glucose availability, a process that involves the multiprotein E3 ligase GID recruiting N termini and catalyzing ubiquitylation of gluconeogenic enzymes. Here, genetics, biochemistry, and cryoelectron microscopy define molecular underpinnings of glucose-induced degradation.

View Article and Find Full Text PDF

The Cullin-RING E3 ligase (CRL) family is commonly hijacked by pathogens to redirect the host ubiquitin proteasome machinery to specific targets. During HIV infection, CRL5 is hijacked by HIV Vif to target viral restriction factors of the APOBEC3 family for ubiquitination and degradation. Here, using a quantitative proteomics approach, we identify the E3 ligase ARIH2 as a regulator of CRL5-mediated APOBEC3 degradation.

View Article and Find Full Text PDF

Cullin-RING E3 ubiquitin ligases (CRLs) are large and diverse multisubunit protein complexes that contribute to about one-fifth of ubiquitin-dependent protein turnover in cells. CRLs are activated by the attachment of the ubiquitin-like protein neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to the cullin subunits. This cullin neddylation is essential for a plethora of CRL-regulated cellular processes and is vital for life.

View Article and Find Full Text PDF

N-terminal acetylation is an abundant modification influencing protein functions. Because ∼80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target.

View Article and Find Full Text PDF

Ubiquitin signalling is a fundamental eukaryotic regulatory system, controlling diverse cellular functions. A cascade of E1, E2, and E3 enzymes is required for assembly of distinct signals, whereas an array of deubiquitinases and ubiquitin-binding modules edit, remove, and translate the signals. In the centre of this cascade sits the E2-conjugating enzyme, relaying activated ubiquitin from the E1 activating enzyme to the substrate, usually via an E3 ubiquitin ligase.

View Article and Find Full Text PDF

Hundreds of human cullin-RING E3 ligases (CRLs) modify thousands of proteins with ubiquitin (UB) to achieve vast regulation. Current dogma posits that CRLs first catalyze UB transfer from an E2 to their client substrates and subsequent polyubiquitylation from various linkage-specific E2s. We report an alternative E3-E3 tagging cascade: many cellular NEDD8-modified CRLs associate with a mechanistically distinct thioester-forming RBR-type E3, ARIH1, and rely on ARIH1 to directly add the first UB and, in some cases, multiple additional individual monoubiquitin modifications onto CRL client substrates.

View Article and Find Full Text PDF

The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL.

View Article and Find Full Text PDF
Article Synopsis
  • Fanconi anemia (FA) is a rare disorder that causes problems like bone marrow failure and makes people more likely to get cancer.
  • Scientists found a patient with two mutations in a gene called UBE2T, which is important for repairing DNA.
  • They discovered that UBE2T is a real FA gene and could also be linked to a rare chance of getting breast cancer.
View Article and Find Full Text PDF
Article Synopsis
  • Cisplatin is an important genotoxin used in chemotherapy for solid tumors, but the underlying mechanisms of its effectiveness are not fully understood.
  • Research revealed that the E3 ubiquitin ligase HOIP plays a crucial role in regulating the cell's response to cisplatin, as cells lacking HOIP are more sensitive to the drug due to increased apoptosis.
  • The study suggests targeting HOIP in cancer therapies could enhance the effectiveness of cisplatin, especially in hard-to-treat cisplatin-resistant ovarian cancer cells.
View Article and Find Full Text PDF

RING (Really Interesting New Gene)-in-between-RING (RBR) enzymes are a distinct class of E3 ubiquitin ligases possessing a cluster of three zinc-binding domains that cooperate to catalyse ubiquitin transfer. The regulation and biological function for most members of the RBR ligases is not known, and all RBR E3s characterized to date are auto-inhibited for in vitro ubiquitylation. Here, we show that TRIAD1 and HHARI, two members of the Ariadne subfamily ligases, associate with distinct neddylated Cullin-RING ligase (CRL) complexes.

View Article and Find Full Text PDF

A distinct mechanism for ubiquitin (Ub) ligation has recently been proposed for the RING1-IBR-RING2 (RBR) family of E3s: an N-terminal RING1 domain recruits a thioester-linked intermediate complex between Ub and the E2 UbcH7, and a structurally distinct C-terminal RING2 domain displays a catalytic cysteine required for Ub ligation. To obtain insights into RBR E3s, we determined the crystal structure of the human homolog of Ariadne (HHARI), which reveals the individual RING1, IBR, and RING2 domains embedded in superdomains involving sequences specific to the Ariadne RBR subfamily. The central IBR is flanked on one side by RING1, which is exposed and binds UbcH7.

View Article and Find Full Text PDF

The Fanconi anemia (FA) pathway recognizes interstrand DNA crosslinks (ICLs) and contributes to their conversion into double-strand DNA breaks, which can be repaired by homologous recombination. Seven orthologs of the 15 proteins associated with Fanconi anemia are functionally conserved in the model organism C. elegans.

View Article and Find Full Text PDF

The ubiquitylation cascade plays an important role in the recruitment of repair factors at DNA double-strand breaks. The involvement of a growing number of ubiquitin E3 ligases adds to the complexity of the DNA damage-induced ubiquitin signaling. Here we use the genetically tractable avian cell line DT40 to investigate the role of HERC2, RNF8 and RNF168 in the DNA damage-induced ubiquitylation pathway.

View Article and Find Full Text PDF

The many proteins that function in the Fanconi anaemia (FA) monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage.

View Article and Find Full Text PDF