MITF, a basic Helix-Loop-Helix Zipper (bHLHZip) transcription factor, plays vital roles in melanocyte development and functions as an oncogene. We perform a genetic screen for suppressors of the Mitf-associated pigmentation phenotype in mice and identify an intragenic Mitf mutation that terminates MITF at the K316 SUMOylation site, leading to loss of the C-end intrinsically disordered region (IDR). The resulting protein is more nuclear but less stable than wild-type MITF and retains DNA-binding ability.
View Article and Find Full Text PDFMITF, a basic-Helix-Loop-Helix Zipper (bHLHZip) transcription factor, plays vital roles in melanocyte development and functions as an oncogene. To explore MITF regulation and its role in melanoma, we conducted a genetic screen for suppressors of the Mitf-associated pigmentation phenotype. An intragenic Mitf mutation was identified, leading to termination of MITF at the K316 SUMOylation site and loss of the C-end intrinsically disordered region (IDR).
View Article and Find Full Text PDFCutaneous malignant melanoma is an aggressive cancer of melanocytes with a strong propensity to metastasize. We posit that melanoma cells acquire metastatic capability by adopting an embryonic-like phenotype, and that a lineage approach would uncover metastatic melanoma biology. Using a genetically engineered mouse model to generate a rich melanoblast transcriptome dataset, we identify melanoblast-specific genes whose expression contribute to metastatic competence and derive a 43-gene signature that predicts patient survival.
View Article and Find Full Text PDFDysfunction and loss of the retinal pigment epithelium (RPE) are hallmarks of retinal degenerative diseases in mammals. A critical transcription factor for RPE development and function is the microphthalmia-associated transcription factor MITF and its germline mutations are associated with clinically distinct disorders, including albinism, microphthalmia, retinal degeneration, and increased risk of developing melanoma. Many studies have revealed new insights into central roles of MITF in RPE cell physiology, including melanogenesis, regulation of trophic factor expression, cell proliferation, anti-oxidant functions, and the visual cycle.
View Article and Find Full Text PDFAll transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes.
View Article and Find Full Text PDFPurpose: Complete deficiency of microphthalmia transcription factor (MITF) in Mitfmi-vga9/mi-vga9 mice is associated with microphthalmia, retinal dysplasia, and albinism. We investigated the ability of dopachrome tautomerase (DCT) promoter-mediated inducible ectopic expression of Mitf-M to rescue these phenotypic abnormalities.
Methods: A new mouse line was created with doxycycline-inducible ectopic Mitf-M expression on an Mitf-deficient Mitfmi-vga9 background (DMV mouse).
The discovery of the Mx gene-dependent, innate resistance of mice against influenza virus was a matter of pure chance. Although the subsequent analysis of this antiviral resistance was guided by straightforward logic, it nevertheless led us into many blind alleys and was full of surprising turns and twists. Unexpectedly, this research resulted in the identification of one of the first interferon-stimulated genes and provided a new view of interferon action.
View Article and Find Full Text PDFCongenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown.
View Article and Find Full Text PDFPigment Cell Melanoma Res
March 2017
During organogenesis, PAX6 is required for establishment of various progenitor subtypes within the central nervous system, eye and pancreas. PAX6 expression is maintained in a variety of cell types within each organ, although its role in each lineage and how it acquires cell-specific activity remain elusive. Herein, we aimed to determine the roles and the hierarchical organization of the PAX6-dependent gene regulatory network during the differentiation of the retinal pigmented epithelium (RPE).
View Article and Find Full Text PDF