Publications by authors named "Arner E"

Selenocysteine (Sec; U in one-letter code) is the twenty-first naturally occurring amino acid, with a selenium atom that gives this cysteine (Cys) homolog unique biochemical properties, including a high nucleophilicity and significant reactivity with electrophilic agents. This can be used in biotechnological Sec-dependent applications. Here, we describe how Sec can be introduced into a carboxy-terminal tetrapeptide motif (-Gly-Cys-Sec-Gly-COOH, known as a Sel-tag) for recombinant proteins by tailoring the encoding gene to become compatible with the Escherichia coli selenoprotein synthesis machinery.

View Article and Find Full Text PDF

ADAMTS-4 and ADAMTS-5 are aggrecanases responsible for the breakdown of cartilage aggrecan in osteoarthritis. Multiple ADAMTS-4 cleavage sites have been described in several matrix proteins including aggrecan, versican, and brevican, but no concise predictive cleavage motif has been identified for this protease. By screening a 13-mer peptide library with a diversity of 10(8), we have identified the ADAMTS-4 cleavage motif E-(AFVLMY)-X(0,1)-(RK)-X(2,3)-(ST)-(VYIFWMLA), with Glu representing P1.

View Article and Find Full Text PDF

Modern alignment methods designed to work rapidly and efficiently with large datasets often do so at the cost of method sensitivity. To overcome this, we have developed a novel alignment program, GRAT, built to accurately align short, highly similar DNA sequences. The program runs rapidly and requires no more memory and CPU power than a desktop computer.

View Article and Find Full Text PDF

Adequate supply of selenium (Se) is critical for synthesis of selenoproteins through selenocysteine insertion mechanism. To explore this process we investigated the expression of the cytosolic and mitochondrial isoenzymes of thioredoxin reductase (TrxR1 and TrxR2) in response to altered Se supply. Rats were fed diets containing different quantities of selenium and the levels of TrxR1 and TrxR2 protein and their corresponding mRNAs were determined in liver and kidney.

View Article and Find Full Text PDF

Objective: Recent published studies have shown that cartilage from ADAMTS-5-knockout mice, but not ADAMTS-4- or ADAMTS-1-knockout mice, is significantly protected from degradation. The present study was undertaken to evaluate the respective roles of these enzymes in human cartilage breakdown, using a small interfering RNA (siRNA) approach to assess the effects of inhibition of each enzyme in normal and osteoarthritic (OA) explants.

Methods: The activities of siRNA specifically targeting ADAMTS-1, -4, and -5 were assessed by transfection into primary human chondrocytes and cultured human cartilage explants.

View Article and Find Full Text PDF

Thioredoxin (Trx), NADPH and thioredoxin reductase (TrxR) comprise a thioredoxin system which exists in nearly all living cells. It functions in thiol-dependent thiol-disulfide exchange reactions crucial to control of the reduced intracellular redox environment, cellular growth, defense against oxidative stress or control of apoptosis and has multi-facetted roles in mammalian cells including implications in cancer. Eg reduced Trx activates DNA binding of transcription factors and is involved in antioxidant defense through repair of oxidatively damaged proteins or as an electron donor to peroxiredoxins.

View Article and Find Full Text PDF

Release factor 2 (RF2), encoded by the prfB gene in Escherichia coli, catalyzes translational termination at UGA and UAA codons. Termination at UGA competes with selenocysteine (Sec) incorporation at Sec-dedicated UGA codons, and RF2 thereby counteracts expression of selenoproteins. prfB is an essential gene in E.

View Article and Find Full Text PDF

We have previously shown that a redox-active selenocysteine-containing tetrapeptide-Sel-tag (Gly-Cys-Sec-Gly)-can be used as a C-terminal fusion motif for recombinant proteins produced in Escherichia coli. This Sel-tag allows selenolate-targeted one-step purification, as well as fluorescent labeling or radiolabeling either with gamma emitters (75Se) or with positron-emitting radionuclides (11C). Here we have analyzed four different redox-active C-terminal motifs, carrying either dithiol (Gly-Cys-Cys-Gly or Ser-Cys-Cys-Ser) or selenolthiol (Gly-Cys-Sec-Gly or Ser-Cys-Sec-Ser) motifs.

View Article and Find Full Text PDF

Objective: Fibronectin fragments are present at high concentrations in the cartilage of patients with rheumatoid arthritis and patients with osteoarthritis (OA) and have been shown to promote cartilage catabolism in human cartilage cultures, suggesting that fibronectin fragments participate in the initiation and progression of arthritic disease. This study was undertaken to 1) identify the major fibronectin fragments in human OA cartilage and confirm their ability to elicit cartilage catabolism, 2) identify the cleavage sites in fibronectin and generate the corresponding neoepitope antibodies, and 3) explore the utility of fibronectin neoepitopes as biomarkers.

Methods: Fibronectin fragments were purified from human OA cartilage using affinity chromatography; their N-termini were then identified by sequencing.

View Article and Find Full Text PDF

We have mutated the redox active C-terminal motif, Gly-Cys-Sec-Gly, of the mammalian selenoprotein thioredoxin reductase (TrxR) to mimic the C-terminal Ser-Cys-Cys-Ser motif of the non-selenoprotein orthologue of Drosophila melanogaster (DmTrxR). The activity of DmTrxR is almost equal to that of mammalian TrxR, which is surprising, because Cys mutants of selenoproteins are normally 1-2 orders of magnitude less active than their selenocysteine (Sec) containing counterparts. It was shown earlier that the flanking Ser residues were important for activating the Cys residues in DmTrxR (Gromer, et.

View Article and Find Full Text PDF

Background: Many genome projects are left unfinished due to complex, repeated regions. Finishing is the most time consuming step in sequencing and current finishing tools are not designed with particular attention to the repeat problem.

Results: We have developed DNPTrapper, a shotgun sequence finishing tool, specifically designed to address the problems posed by the presence of repeated regions in the target sequence.

View Article and Find Full Text PDF

Here we described novel interactions of the mammalian selenoprotein thioredoxin reductase (TrxR) with nitroaromatic environmental pollutants and drugs. We found that TrxR could catalyze nitroreductase reactions with either one- or two-electron reduction, using its selenocysteine-containing active site and another redox active center, presumably the FAD. Tetryl and p-dinitrobenzene were the most efficient nitroaromatic substrates with a k(cat) of 1.

View Article and Find Full Text PDF

ADAMTS-4 (aggrecanase 1) is synthesized as a latent precursor protein that may require activation through removal of its prodomain before it can exert catalytic activity. We examined various proteinases as well as auto-activation under a wide range of conditions for removal of the prodomain and induction of enzymatic activity. The proprotein convertases, furin, PACE4, and PC5/6 efficiently removed the prodomain through cleavage at Arg(212)/Phe(213), generating an active enzyme.

View Article and Find Full Text PDF

The mobilization of fat stored in adipose tissue is mediated by hormone-sensitive lipase (HSL) and the recently characterized adipose triglyceride lipase (ATGL), yet their relative importance in lipolysis is unknown. We show that a novel potent inhibitor of HSL does not inhibit other lipases. The compound counteracted catecholamine-stimulated lipolysis in mouse adipocytes and had no effect on residual triglyceride hydrolysis and lipolysis in HSL-null mice.

View Article and Find Full Text PDF

Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein.

View Article and Find Full Text PDF

Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T.

View Article and Find Full Text PDF

Selenocysteine (Sec), the 21st amino acid, exists naturally in all kingdoms of life as the defining entity of selenoproteins. Sec is a cysteine (Cys) residue analogue with a selenium-containing selenol group in place of the sulfur-containing thiol group in Cys. The selenium atom gives Sec quite different properties from Cys.

View Article and Find Full Text PDF

Selenium is essential to human life and occurs in selenoproteins as selenocysteine (Sec), the 21st amino acid. The selenium atom endows selenocysteine with unique biochemical properties, including a low pK(a) and a high reactivity with many electrophilic agents. Here we describe the introduction of selenocysteine into recombinant non-selenoproteins produced in Escherichia coli, as part of a small tetrapeptide motif at the C terminus.

View Article and Find Full Text PDF

The mammalian thioredoxin reductases (TrxR) are selenoproteins containing a catalytically active selenocysteine residue (Sec) and are important enzymes in cellular redox control. The cotranslational incorporation of Sec, necessary for activity, is governed by a stem-loop structure in the 3'-untranslated region of the mRNA and demands adequate selenium availability. The complicated translation machinery required for Sec incorporation is a major obstacle in isolating mammalian cell lines stably overexpressing selenoproteins.

View Article and Find Full Text PDF

Evolution of a probable 'glutathione-binding ancestor' resulting in a common thioredoxin-fold for glutathione S-transferases and glutathione peroxidases may possibly suggest that a glutathione S-transferase could be engineered into a selenium-containing glutathione S-transferase (seleno-GST), having glutathione peroxidase (GPX) activity. Here, we addressed this question by production of such protein. In order to obtain a recombinant seleno-GST produced in Escherichia coli, we introduced a variant bacterial-type selenocysteine insertion sequence (SECIS) element which afforded substitution with selenocysteine for the catalytic Tyr residue in the active site of GST from Schistosoma japonica.

View Article and Find Full Text PDF

The production of heterologous selenoproteins in Escherichia coli necessitates the design of a secondary structure in the mRNA forming a selenocysteine insertion sequence (SECIS) element compatible with SelB, the elongation factor for selenocysteine insertion at a predefined UGA codon. SelB competes with release factor 2 (RF2) catalyzing translational termination at UGA. Stoichiometry between mRNA, the SelB elongation factor, and RF2 is thereby important, whereas other expression conditions affecting the yield of recombinant selenoproteins have been poorly assessed.

View Article and Find Full Text PDF

Uptake of modified low-density lipoproteins (LDLs) by macrophages in the arterial wall is an important event in atherogenesis. Indeed, oxidatively modified LDLs (oxLDLs) are known to affect various cellular processes by modulating oxidation-sensitive signaling pathways. Here we found that the ubiquitous 55 kDa selenoprotein thioredoxin reductase 1 (TrxR1), which is a key enzyme for cellular redox control and antioxidant defense, was upregulated in human atherosclerotic plaques and expressed in foam cells.

View Article and Find Full Text PDF

Human thioredoxin reductase 1 (TrxR1, the TXNRD1 gene product) is a ubiquitously expressed selenoprotein with many important redox regulatory functions. In this study, we have further characterized the recently identified core promoter region of TXNRD1. One critical Sp1/Sp3 site was found to be important in A549 and HeLa cells, whereas another Sp1/Sp3 site and one Oct1 site bound transcription factors but were, nonetheless, dispensable for transcription.

View Article and Find Full Text PDF