Epitaxial low temperature grown GaAs (LT-GaAs) on silicon (LT-GaAs/Si) has the potential for terahertz (THz) photoconductive antenna applications. However, crystalline, optical and electrical properties of heteroepitaxial grown LT-GaAs/Si can be very different from those grown on semi-insulating GaAs substrates ('reference'). In this study, we investigate optical properties of an epitaxial grown LT-GaAs/Si sample, compared to a reference grown under the same substrate temperature, and with the same layer thickness.
View Article and Find Full Text PDFWe present the implementation of an efficient terahertz (THz) photoconductive antenna (PCA) emitter design that utilizes high mobility carriers in the two-dimensional electron gas (2DEG) of a modulation-doped heterostructure (MDH). The PCA design is fabricated with recessed metal electrodes in direct contact with the 2DEG region of the MDH. We compare the performance of the MDH PCA having recessed contacts with a PCA fabricated on bulk semi-insulating GaAs, on low temperature-grown GaAs, and a MDH PCA with the contacts fabricated on the surface.
View Article and Find Full Text PDFThe poor gas selectivity problem has been a long-standing issue for miniaturized chemical-resistor gas sensors. The electronic nose (e-nose) was proposed in the 1980s to tackle the selectivity issue, but it required top-down chemical functionalization processes to deposit multiple functional materials. Here, we report a novel gas-sensing scheme using a single graphene field-effect transistor (GFET) and machine learning to realize gas selectivity under particular conditions by combining the unique properties of the GFET and e-nose concept.
View Article and Find Full Text PDFWe present the use of a "double optical pump" technique in terahertz time-domain emission spectroscopy as an alternative method to investigate the lifetime of photo-excited carriers in semiconductors. Compared to the commonly employed optical pump-probe transient photo-reflectance, this non-contact and room temperature characterization technique allows relative ease in achieving optical alignment. The technique was implemented to evaluate the carrier lifetime in low temperature-grown gallium arsenide (LT-GaAs).
View Article and Find Full Text PDFTerahertz (THz) wave detection and emission via Cherenkov-phase-matched nonlinear optical effects at 1.55-μm optical wavelength were demonstrated using a GaAs with metal-coating (M-G-M) and bare GaAs as a reference sample in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). The metal-coated GaAs is superior to the bare wafer both as a THz electro-optic detector and as an emitter.
View Article and Find Full Text PDFA one-order-of-magnitude terahertz (THz) emission enhancement in the transmission geometry, over a 0.7-THz broadband range, was observed in semi-insulating gallium arsenide (SI-GaAs) integrated with a subwavelength one-dimensional metal line array (1DMLA). THz emission of the 1DMLA samples showed an intensity increase and exhibited a full-width-at-half-maximum broadening relative to the emission of the bare substrate.
View Article and Find Full Text PDFThe application of a p-n homojunction based on zinc oxide (ZnO) nanorods as photodetector is presented in this study. The homojunctions were grown via chemical bath deposition for 6, 9, and 12 hours per layer of the junction. X-ray diffraction and scanning electron micrographs confirmed the material composition, structure, and morphology of the grown device.
View Article and Find Full Text PDFThe resistance-based pH sensing capability of ZnO nanorods was presented in this study. Interdigitated finger structures of nickel/gold (Ni/Au) electrodes were fabricated on the substrates prior to the sensing material. The effect of varying electrode widths was also considered.
View Article and Find Full Text PDFGaAs/Al0.1Ga0.9As core-shell nanowires (CSNWs), with average lateral size of 125 nm, were grown on gold nanoparticle-activated Si (100) and Si (111) substrates via molecular beam epitaxy.
View Article and Find Full Text PDFWe present experimental demonstration of photocarrier dynamics in InAs quantum dots (QDs) via terahertz (THz) time-domain spectroscopy (TDS) using two excitation wavelengths and observing the magnetic field polarity characteristics of the THz signal. The InAs QDs was grown using standard Stranski-Krastanow technique on semi-insulating GaAs substrate. Excitation pump at 800 nm- and 910 nm-wavelength were used to distinguish THz emission from the InAs/GaAs matrix and InAs respectively.
View Article and Find Full Text PDFIndium oxide (In2O3) films grown by thermal oxidation on MgO substrates were optically excited by femtosecond laser pulses having photon energy lower than the In2O3 bandgap. Terahertz (THz) pulse emission was observed using time domain spectroscopy. Results show that THz emission saturates at an excitation fluence of ~400 nJ/cm2.
View Article and Find Full Text PDFWe report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change. We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam.
View Article and Find Full Text PDF