Objective: To develop and validate a layered deep learning algorithm which automatically creates three-dimensional (3D) surface models of the human mandible out of cone-beam computed tomography (CBCT) imaging.
Materials & Methods: Two convolutional networks using a 3D U-Net architecture were combined and deployed in a cloud-based artificial intelligence (AI) model. The AI model was trained in two phases and iteratively improved to optimize the segmentation result using 160 anonymized full skull CBCT scans of orthognathic surgery patients (70 preoperative scans and 90 postoperative scans).
The purpose of the presented Artificial Intelligence (AI)-tool was to automatically segment the mandibular molars on panoramic radiographs and extract the molar orientations in order to predict the third molars' eruption potential. In total, 838 panoramic radiographs were used for training ( = 588) and validation ( = 250) of the network. A fully convolutional neural network with ResNet-101 backbone jointly predicted the molar segmentation maps and an estimate of the orientation lines, which was then iteratively refined by regression on the mesial and distal sides of the segmentation contours.
View Article and Find Full Text PDF