Whereas eubacterial and eukaryotic riboflavin synthases form homotrimers, archaeal riboflavin synthases from Methanocaldococcus jannaschii and Methanothermobacter thermoautrophicus are homopentamers with sequence similarity to the 6,7-dimethyl-8-ribityllumazine synthase catalyzing the penultimate step in riboflavin biosynthesis. Recently it could be shown that the complex dismutation reaction catalyzed by the pentameric M. jannaschii riboflavin synthase generates riboflavin with the same regiochemistry as observed for trimeric riboflavin synthases.
View Article and Find Full Text PDFThe open reading frame MJ1184 of Methanococcus jannaschii with similarity to riboflavin synthase of Methanothermobacter thermoautotrophicus was cloned into an expression vector but was poorly expressed in an Escherichia coli host strain. However, a synthetic open reading frame that was optimized for expression in E.coli directed the synthesis of abundant amounts of a protein with an apparent subunit mass of 17.
View Article and Find Full Text PDF