Cytotoxic activity is a hallmark of the immunopathogenesis in human cutaneous leishmaniasis (CL). In this study, we identified accumulation of CD4 granzyme B producing T cells with increased cytotoxic capacity in CL lesions. These cells showed enhanced expression of activating NK receptors (NKG2D and NKG2C), diminished expression of inhibitory NKG2A, along with the upregulation of the senescence marker CD57.
View Article and Find Full Text PDFClin Exp Immunol
October 2024
The American Tegumentary Leishmaniasis (ATL) is caused by protozoans of the genus Leishmania and varies from mild localized cutaneous leishmaniasis (LCL) form to more severe manifestations such as the diffuse cutaneous leishmaniasis (DCL) form and the mucosal leishmaniasis (ML) form. Previously, we demonstrated the accumulation of senescent cells in skin lesions of patients with LCL. Moreover, lesional transcriptomic analyses revealed a robust co-induction of senescence and pro-inflammatory gene signatures, highlighting the critical role of senescent T cells in orchestrating pathology.
View Article and Find Full Text PDFVaricella-zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterised by epidermal virus replication in skin and mucosa and the formation of blisters. We have previously shown that VZV infection has a profound effect on keratinocyte differentiation, altering the normal pattern of epidermal gene expression. In particular, VZV infection reduces expression of suprabasal keratins 1 and 10 and desmosomal proteins, disrupting epidermal structure to promote expression of a blistering phenotype.
View Article and Find Full Text PDFBackground: Psoriasis is an inflammatory skin disease with unclear pathogenesis and unmet therapeutic needs.
Objective: To investigate the role of senescent CD4 T cells in psoriatic lesion formation and explore the application of senolytics in treating psoriasis.
Methods: We explored the expression levels of p16 and p21, classical markers of cellular senescence, in CD4 T cells from human psoriatic lesions and imiquimod (IMQ)-induced psoriatic lesions.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by persistent activation of immune cells and overproduction of autoantibodies. The accumulation of senescent T and B cells has been observed in SLE and other immune-mediated diseases. However, the exact mechanistic pathways contributing to this process in SLE remain incompletely understood.
View Article and Find Full Text PDFVitamin D replacement in older insufficient adults significantly improves their antigen-specific varicella zoster virus (VZV) cutaneous immunity. However, the mechanisms involved in this enhancement of cutaneous immunity are not known. Here, we show for the first time that vitamin D blocks the senescence-associated secretory phenotype (SASP) production by senescent fibroblasts by partially inhibiting the p38 MAPK pathway.
View Article and Find Full Text PDFThe immunophenotype of oldest centenarians, i.e. semi- and supercentenarians, could provide important information about their ability to adapt to factors associated with immune changes, including ageing per se and chronic Cytomegalovirus infection.
View Article and Find Full Text PDFBackground: Patient-derived xenograft (PDX) models involve the engraftment of tumour tissue in immunocompromised mice and represent an important pre-clinical oncology research method. A limitation of non-small cell lung cancer (NSCLC) PDX model derivation in NOD- IL2Rgamma (NSG) mice is that a subset of initial engraftments are of lymphocytic, rather than tumour origin.
Methods: The immunophenotype of lymphoproliferations arising in the lung TRACERx PDX pipeline were characterised.
The accumulation of senescent cells in the tumor microenvironment can drive tumorigenesis in a paracrine manner through the senescence-associated secretory phenotype (SASP). Using a new p16-FDR mouse line, we show that macrophages and endothelial cells are the predominant senescent cell types in murine KRAS-driven lung tumors. Through single cell transcriptomics, we identify a population of tumor-associated macrophages that express a unique array of pro-tumorigenic SASP factors and surface proteins and are also present in normal aged lungs.
View Article and Find Full Text PDFAs the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells.
View Article and Find Full Text PDFThe common view is that T lymphocytes activate telomerase to delay senescence. Here we show that some T cells (primarily naïve and central memory cells) elongated telomeres by acquiring telomere vesicles from antigen-presenting cells (APCs) independently of telomerase action. Upon contact with these T cells, APCs degraded shelterin to donate telomeres, which were cleaved by the telomere trimming factor TZAP, and then transferred in extracellular vesicles at the immunological synapse.
View Article and Find Full Text PDFAs people around the world continue to live longer, maintaining a good quality of life is of increasing importance. The COVID-19 pandemic revealed that the elderly are disproportionally vulnerable to infectious diseases and Immunosenescence plays a critical role in that. An ageing immune system influences the conventional activity of T cells which are at the forefront of eliminating harmful foreign antigens.
View Article and Find Full Text PDFImmunology
December 2021
The severity of lesions that develop in patients infected by Leishmania braziliensis is mainly associated with a highly cytotoxic and inflammatory cutaneous environment. Recently, we demonstrated that senescent T and NK cells play a role in the establishment and maintenance of this tissue inflammation. Here, we extended those findings using transcriptomic analyses that demonstrate a strong co-induction of senescence and pro-inflammatory gene signatures in cutaneous leishmaniasis (CL) lesions.
View Article and Find Full Text PDFSenescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer.
View Article and Find Full Text PDFSeveral types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity.
View Article and Find Full Text PDFGATA3 is as a lineage-specific transcription factor that drives the differentiation of CD4 T helper 2 (Th2) cells, but is also involved in a variety of processes such as immune regulation, proliferation and maintenance in other T cell and non-T cell lineages. Here we show a mechanism utilised by CD4 T cells to increase mitochondrial mass in response to DNA damage through the actions of GATA3 and AMPK. Activated AMPK increases expression of PPARG coactivator 1 alpha (PPARGC1A or PGC1α protein) at the level of transcription and GATA3 at the level of translation, while DNA damage enhances expression of nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2).
View Article and Find Full Text PDFPatients infected by develop debilitating skin lesions. The role of inhibitory checkpoint receptors (ICRs) that induce T cell exhaustion during this disease is not known. Transcriptional profiling identified increased expression of ICRs including PD-1, PDL-1, PDL-2, TIM-3, and CTLA-4 in skin lesions of patients that was confirmed by immunohistology where there was increased expression of PD-1, TIM-3, and CTLA-4 in both CD4 and CD8 T cell subsets.
View Article and Find Full Text PDFWe have previously shown that healthy older adults exhibit reduced cutaneous immune responses during a varicella zoster virus (VZV) antigen challenge that correlated with a nonspecific inflammatory response to the injection itself. Here we found that needle damage during intradermal injections in older adults led to an increase in the number of cutaneous senescent fibroblasts expressing CCL2, resulting in the local recruitment of inflammatory monocytes. These infiltrating monocytes secreted prostaglandin E2, which inhibited resident memory T cell activation and proliferation.
View Article and Find Full Text PDFIntroduction: Ageing is associated with increased number of infections, decreased vaccine efficacy and increased systemic inflammation termed inflammageing. These changes are reflected by reduced recall responses to varicella zoster virus (VZV) challenge in the skin of older adults. Vitamin D deficiency is more common in the old and has been associated with frailty and increased inflammation.
View Article and Find Full Text PDFWhile COVID-19, the disease driven by SARS-CoV-2 has ignited interest in the host immune response to this infection, it has also highlighted the lack of treatment options for the damaging inflammatory responses driven by pathogens that precipitate the acute respiratory distress syndrome (ARDS). With the global prevalence of SARS-CoV-2 and the likelihood of a second winter spike alongside seasonal flu, the need for effective and targeted anti-inflammatory agents is even more pressing. Here we discuss the aetiology of COVID-19 and the common signalling pathways driven by SARS-CoV-2, namely p38 MAP kinase.
View Article and Find Full Text PDF