Meso-octaalkylcalix[4]pyrrolates are a class of redox-active porphyrinogen ligands. They have been well established in d- and f-block chemistry for over three decades but have only recently been introduced as ligands for p-block elements. Here, we present a study on the influence of meso-substituents on the redox chemistry of calix[4]pyrrolato stannate(II) dianions [2] (R=Me, Et).
View Article and Find Full Text PDFStructural constraint approaches have been employed toward different ends in recent years, from augmenting the nucleophilicity in pyramidalized low-valent p-block compounds to enhancing the Lewis acidities at planarized tetravalent p-block elements. While previous studies exploited these effects separately, this work introduces a strategy to concatenate structural constraint approaches at individual stages of a reaction sequence in a row to unlock a synthetic path unattainable by conventional methodologies. The boosted nucleophilicity resulting from the constrained tetracoordinated calix[4]pyrrolato stannate(II) dianion enables the reductive formation of sterically unprotected acyclic aminocarbenes.
View Article and Find Full Text PDF