Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant.
View Article and Find Full Text PDFThe reconstruction of the anterior cruciate ligament is, for the most part, currently performed with interference screws made of titanium or degradable polymers. The aim of this study was to investigate the use of biodegradable magnesium interference screws for such a procedure because of their known biocompatibility and reported osteoconductive effects. The left tibiae of each of 18 rabbits were implanted with a magnesium-based (MgYREZr-alloy) screw, and another 18 with a titanium-based control.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
December 2016
Purpose: Degradable magnesium implants have received increasing interest in recent years. In anterior cruciate ligament reconstruction surgery, the well-known osteoconductive effects of biodegradable magnesium alloys may be useful. The aim of this study was to examine whether interference screws made of MgYREZr have comparable biomechanical properties to commonly used biodegradable screws and whether a different thread on the magnesium screw has an influence on the fixation strength.
View Article and Find Full Text PDFDegradable magnesium alloys are promising biomaterials for orthopedic applications. The aim of this study was to evaluate the potential effects on both the synovial membrane (synovialis) and the synovial fluid (synovia) of the degradation products of a MgYREZr-pin implanted in the intercondylar femoral notch in a rabbit model. Thirty-six animals were randomized into two groups (MgYREZr or Ti6Al4V alloy) of 18 animals each.
View Article and Find Full Text PDFMagnesium alloys are promising implant materials for use in orthopaedic applications. In the present study, screws made of the Mg-alloy ZEK100 (n = 12) were implanted in rabbit tibiae for four and six weeks, respectively. For degradation analysis, in vivo µ-computed tomography (µCT), a determination of the weight changes and SEM/EDX examinations of the screws were performed.
View Article and Find Full Text PDFBackground: In recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery.
Methods: ZEK100 plates were examined in this in vitro study with Hank's Balanced Salt Solution under physiological conditions with a constant laminar flow rate.
Magnesium alloys have been in the focus of research in recent years as degradable biomaterial. The purpose of this study was the biomechanical characterisation of MgCa0.8-screws.
View Article and Find Full Text PDFThe aim of this study was to compare the biomechanical properties of degradable magnesium calcium alloy (MgCa0.8) screws and commonly used stainless steel (S316L) screws and to assess the in vivo degradation behavior of MgCa0.8.
View Article and Find Full Text PDFBackground: Recent studies have shown the potential suitability of magnesium alloys as biodegradable implants. The aim of the present study was to compare the soft tissue biocompatibility of MgCa0.8 and commonly used surgical steel in vivo.
View Article and Find Full Text PDF