To expand the applicability of recently developed dioxane- and morpholino-based nucleotide analogues, their seed region destabilizing properties in small interfering RNAs (siRNAs) were investigated in order to improve potential off-target profiles. For this purpose, the corresponding adenosine analogues were synthesized in two diastereomeric series as building blocks for the automated oligonucleotide synthesis. The obtained nucleotide precursors were integrated at position 7 of an siRNA antisense strand, targeting transthyretin messenger RNA.
View Article and Find Full Text PDFA morpholine-based nucleotide analog was developed as a building block for hepatic siRNA targeting and stabilization. Attachment of an asialoglycoprotein-binding GalNAc ligand at the morpholine nitrogen was realized with different linkers. The obtained morpholino GalNAc scaffolds were coupled to the sense strand of a transthyretin-targeting siRNA and tested for their knockdown potency and .
View Article and Find Full Text PDFA novel class of nucleotide analogues with a dioxane ring as central scaffold has been developed. Synthetic routes in two diastereomeric series were realized, and the final thymidine analogues were synthesized with common functionalities for the automated oligonucleotide synthesis. The chemical space of the initially derived nucleotides was expanded by changing the central dioxane to analogous morpholine derivatives.
View Article and Find Full Text PDF