Publications by authors named "Arne Herring"

Background: Blood kallikrein-8 is supposed to be a biomarker for mild cognitive impairment (MCI) due to Alzheimer's disease (AD), a precursor of AD dementia. Little is known about the association of kallikrein-8 and non-AD type dementias.

Objective: To investigate whether blood kallikrein-8 is elevated in individuals with non-amnestic MCI (naMCI), which has a higher probability to progress to a non-AD type dementia, compared with cognitively unimpaired (CU) controls.

View Article and Find Full Text PDF

Background: Kallikrein-8 (KLK8) might be an early blood-biomarker of Alzheimer's disease (AD). We examined whether blood KLK8 is elevated in persons with amnestic mild cognitive impairment (aMCI) which is a precursor of AD, compared to cognitively unimpaired (CU) controls.

Methods: Forty cases and 80 controls, matched by sex and age (± 3years), were participants of the longitudinal population-based Heinz Nixdorf Recall study (baseline: 2000-2003).

View Article and Find Full Text PDF

Aims: Previous work in our lab has identified the protease kallikrein-8 (KLK8) as a potential upstream mover in the pathogenesis of Alzheimer's disease (AD). We showed pathologically elevated levels of KLK8 in the cerebrospinal fluid and blood of patients with mild cognitive impairment or dementia due to AD, and in brains of patients and transgenic CRND8 (TgCRND8) mice in incipient stages of the disease. Furthermore, short-term antibody-mediated KLK8 inhibition in moderate stage disease alleviated AD pathology in female mice.

View Article and Find Full Text PDF

Objectives: The heterogeneity of Amyloid-beta (Aβ) plaque load in patients with Alzheimer's disease (AD) has puzzled neuropathology. Since brain Aβ plaque load does not correlate with cognitive decline, neurotoxic soluble Aβ oligomers have been championed as disease-causing agents in early AD. So far, investigating molecular interactions between soluble oligomeric Aβ and insoluble Aβ in vivo has been difficult because of the abundance of Aβ oligomer species and the kinetic equilibrium in which they coexist.

View Article and Find Full Text PDF

Psychiatric symptoms as seen in affective and anxiety disorders frequently appear during glioblastoma (GBM) treatment and disease progression, additionally deteriorate patient's daily life routine. These central comorbidities are difficult to recognize and the causes for these effects are unknown. Since overactivation of mechanistic target of rapamycin (mTOR)- signaling is one key driver in GBM growth, the present study aimed at examining in rats with experimentally induced GBM, neurobehavioral consequences during disease progression and therapy.

View Article and Find Full Text PDF

Disrupted neuronal plasticity due to subtle inflammation is considered to play a fundamental role in the pathogenesis of major depressive disorder. Interferon-α (IFN-α) potentiates immune responses against viral pathogens that induce toll-like receptor-3 (TLR3) activation but evokes severe major depressive disorder in humans by mechanisms that remain insufficiently described. By using a previously established mouse model of depression induced by combined delivery of IFN-α and polyinosinic:polycytidylic acid (poly(I:C)), a TLR3 agonist, we provide evidence that IFN-α and poly(I:C) reduce apical dendritic spine density in the hippocampal CA1 area ex vivo via mechanisms involving decreased TrkB signaling.

View Article and Find Full Text PDF

We recently identified excessive cerebral kallikrein-8 (KLK8) mRNA and protein levels at incipient stages of Alzheimer's disease (AD) in AD patients and TgCRND8 mice. Additionally, we showed that antibody-mediated KLK8 inhibition exerts therapeutic effects on AD along with enhancing neuroplasticity, resulting in improved spatial memory in mice. Mounting evidence further substantiates an important role of the protease KLK8 in neuroplasticity.

View Article and Find Full Text PDF

Objective: There is still an urgent need for supportive minimally invasive and cost-effective biomarkers for early diagnosis of Alzheimer's disease (AD). Previous work in our lab has identified Kallikrein-8 (KLK8) as a potential candidate since it shows an excessive increase in human brain in preclinical disease stages. The aim of this study was to evaluate the diagnostic performance of cerebrospinal fluid (CSF) and blood KLK8 for AD and mild cognitive impairment (MCI) due to AD.

View Article and Find Full Text PDF

We examined behaviors and neurotransmitter levels in the tgDimer mouse, a model for early Alzheimer's disease, that expresses exclusively soluble amyloid beta (Aβ) dimers and is devoid of Aβ plaques, astrogliosis, and neuroinflammation. Seven-month-old mice were subjected to tests of motor activity, attention, anxiety, habituation learning, working memory, and depression-related behaviors. They were impaired in nonselective attention and motor learning and showed anxiety- and despair-related behaviors.

View Article and Find Full Text PDF

Women seem to have a higher vulnerability to Alzheimer's disease (AD), but the underlying mechanisms of this sex dichotomy are not well understood. Here, we first determined the influence of sex on various aspects of Alzheimer's pathology in transgenic CRND8 mice. We demonstrate that beta-amyloid (Aβ) plaque burden starts to be more severe around P180 (moderate disease stage) in female transgenics when compared to males and that aging aggravates this sex-specific difference.

View Article and Find Full Text PDF

Background: Clinical data indicate that therapy with small-molecule immunosuppressive drugs is frequently accompanied by an incidence rate of neuropsychiatric symptoms. In the current approach, we investigated in rats whether repeated administration of rapamycin, reflecting clinical conditions of patients undergoing therapy with this mammalian target of rapamycin inhibitor, precipitates changes in neurobehavioral functioning.

Methods: Male adult Dark Agouti rats were daily treated with i.

View Article and Find Full Text PDF

After several decades of Alzheimer's disease (AD) research and failed clinical trials, one can speculate that targeting a single pathway is not sufficient. However, a cocktail of novel therapeutics will constitute a challenging clinical trial. A more plausible approach will capitalize on a drug that has relevant and synergistic multiple-target effects in AD.

View Article and Find Full Text PDF

Introduction: Memory loss and increased anxiety are clinical hallmarks of Alzheimer's disease (AD). Kallikrein-8 is a protease implicated in memory acquisition and anxiety, and its mRNA is known to be up-regulated in AD-affected human hippocampus. Therefore, an involvement of Kallikrein-8 in Alzheimer's pathogenesis is conceivable but remains to be proved.

View Article and Find Full Text PDF

In the last decade a vast number of animal studies have produced overwhelming evidence that exercise not only compensates for memory loss by increasing brain plasticity and cognitive reserve but also directly counteracts Alzheimer-like pathology when provided before disease onset or in early disease stages. But so far, there is little knowledge about therapeutic effects of training when started in advanced disease stages. In the present study we show that following seven months of sedentary life style five months of wheel running, started four months after disease onset was still able to mitigate at least some aspects of the full-blown Alzheimer's pathology in TgCRND8 mice.

View Article and Find Full Text PDF

Despite amyloid plaques, consisting of insoluble, aggregated amyloid-β peptides, being a defining feature of Alzheimer's disease, their significance has been challenged due to controversial findings regarding the correlation of cognitive impairment in Alzheimer's disease with plaque load. The amyloid cascade hypothesis defines soluble amyloid-β oligomers, consisting of multiple amyloid-β monomers, as precursors of insoluble amyloid-β plaques. Dissecting the biological effects of single amyloid-β oligomers, for example of amyloid-β dimers, an abundant amyloid-β oligomer associated with clinical progression of Alzheimer's disease, has been difficult due to the inability to control the kinetics of amyloid-β multimerization.

View Article and Find Full Text PDF

Rapamycin is a drug with antiproliferative and immunosuppressive properties, widely used for prevention of acute graft rejection and cancer therapy. It specifically inhibits the activity of the mammalian target of rapamycin (mTOR), a protein kinase known to play an important role in cell growth, proliferation and antibody production. Clinical observations show that patients undergoing therapy with immunosuppressive drugs frequently suffer from affective disorders such as anxiety or depression.

View Article and Find Full Text PDF

Aquaporin-1 (AQP1) is a water channel protein, widely expressed in epithelial and endothelial cells, known to be associated with invasion, angiogenesis, cell migration and formation of tumour oedema in several malignancies. We investigated the pattern of immunohistochemical expression of AQP1 in human astrocytomas and its role in tumour angiogenesis and infiltration. Immunohistochemical staining of AQP1 was performed in astrocytomas of grade II, III and IV.

View Article and Find Full Text PDF

Alterations in the expression of Reelin (RELN) have been implicated in the pathology of Alzheimer's disease (AD). However, whether these changes are cause or consequence of AD remains to be resolved. To better understand the role of RELN pathway in the development of AD, we examined the expression profile of RELN and its downstream signaling members APOER2, VLDLR, and DAB1 in AD-vulnerable regions of transgenic and wildtype mice as well as in AD patients and controls across disease stages and/or aging.

View Article and Find Full Text PDF

Physical activity protects brain function in healthy individuals and those with Alzheimer's disease (AD). Evidence for beneficial effects of parental exercise on the health status of their progeny is sparse and limited to nondiseased individuals. Here, we questioned whether maternal running interferes with offspring's AD-like pathology and sought to decipher the underlying mechanisms in TgCRND8 mice.

View Article and Find Full Text PDF

Combined preventive and therapeutic physical/cognitive stimulation starting before disease onset and continuing over its progression reduce Alzheimer-related pathology in transgenic mice. We now report that exposure of TgCRND8 mice to an enriched environment as either a preventive or therapeutic approach is also capable to reduce Aβ burden, though with different plaque and cerebral amyloid angiopathy (CAA) morphology. Preventive treatment resulted in fewer and smaller plaques without affecting CAA, whereas in therapeutically treated mice beside reduction of CAA extent, numerous plaques of strongly diminished size were found, so that total plaque loads declined as well.

View Article and Find Full Text PDF

The behaviour of transgenic animals modelling human diseases such as Alzheimer's disease (AD) is typically characterised in artificial apparatuses rather than labour-intensively observing their spontaneous behaviour in the home environment. Here we report on an in-depth behavioural characterisation of the day-to-day life of a murine model for AD living in a large (6.6 m(2)) semi-naturalistic indoor enclosure.

View Article and Find Full Text PDF

Oxidative stress is a key feature during progression of chronic neurodegenerative conditions such as Alzheimer's disease. In aging humans and animals, voluntary exercise lowers oxidative stress reactions. Additionally, recent work in our lab demonstrated that cognitive and physical stimulation (termed environmental enrichment) counteracts amyloid beta pathology, neurovascular dysfunction and behavioral symptoms in mice with Alzheimer-like disease.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is accompanied by hippocampal neuronal loss and abnormal neurogenesis, both of which probably contributing to AD-related cognitive deficits. Mounting evidence indicates that cognitive and physical stimulation provided by environmental enrichment improves neurogenesis in healthy animals and counteracts beta-amyloid pathology in mouse models of AD. Here, we hypothesized that environmental enrichment has also an impact on hippocampal neurogenesis in mice with AD-like pathology.

View Article and Find Full Text PDF

Several studies on both humans and animals reveal benefits of physical exercise on brain function and health. A previous study on TgCRND8 mice, a transgenic model of Alzheimer's disease, reported beneficial effects of premorbid onset of long-term access to a running wheel on spatial learning and plaque deposition. Our study investigated the effects of access to a running wheel after the onset of Abeta pathology on behavioural, endocrinological, and neuropathological parameters.

View Article and Find Full Text PDF

Dopamine plays an important role in learning and memory processes. A deficit of this neurotransmitter as it is apparent in Alzheimer's disease (AD) may contribute to cognitive decline, a major symptom of AD patients. The aim of this study was to elucidate whether or not stimulation of the dopaminergic system leads to an improvement of cognitive function and reduction of non-cognitive behavioral alterations in a murine model of AD.

View Article and Find Full Text PDF