The analytical characterization and an application example of a novel laboratory X-ray fluorescence (μXRF) microprobe is presented, which combines monochromatic, focused X-ray beam excitation with a high-performance silicon drift detector (SDD) and two-dimensional/three-dimensional (2D/3D) scanning capability. Because of the monochromatic excitation, below the (multiple) Compton/Rayleigh scattering peak region, the XRF spectra obtained by this laboratory spectrometer has similarly high peak-to-background ratios as those which can be obtained at synchrotron sources. However, the flux density difference between the proposed laboratory instrument and current synchrotron end stations is on the order of several orders of magnitude.
View Article and Find Full Text PDF