Publications by authors named "Arne C Sell"

Photocatalysis holds great promise for changing the way value-added molecules are currently prepared. However, many photocatalytic reactions suffer from quantum yields well below 10%, hampering the transition from lab-scale reactions to large-scale or even industrial applications. Molecular dyads can be designed such that the beneficial properties of inorganic and organic chromophores are combined, resulting in milder reaction conditions and improved reaction quantum yields of photocatalytic reactions.

View Article and Find Full Text PDF

Substituted diphenylthioureas (DPTUs) are efficient hydrogen-bonding organo-catalysts, and substitution of DPTUs has been shown to greatly affect catalytic activity. Yet, both the conformation of DPTUs in solution and the conformation and hydrogen-bonded motifs within catalytically active intermediates, pertinent to their mode of activation, have remained elusive. By combining linear and ultrafast vibrational spectroscopy with spectroscopic simulations and calculations, we show that different conformational states of thioureas give rise to distinctively different N-H stretching bands in the infrared spectra.

View Article and Find Full Text PDF

Long triplet lifetimes of excited photosensitizers are essential for efficient energy transfer reactions in water, given that the concentrations of dissolved oxygen and suitable acceptors in aqueous media are typically much lower than in organic solvents. Herein, we report the design, synthesis and photochemical characterization of two structurally related water-soluble ruthenium complex-based dyads decorated with a covalently attached pyrene chromophore. The triplet energy of the latter is slightly below that of the metal complex enabling a so-called triplet reservoir and excited-state lifetime extensions of up to two orders of magnitude.

View Article and Find Full Text PDF