Receptor tyrosine kinase (RTK) overexpression is linked to the development and progression of multiple cancers. RTKs are classically considered to initiate cytoplasmic signalling pathways via ligand-induced tyrosine phosphorylation, however recent evidence points to a second tier of signalling contingent on interactions mediated by the proline-rich motif (PRM) regions of non-activated RTKs. The presence of PRMs on the C-termini of >40 % of all RTKs and the abundance of PRM-binding proteins encoded by the human genome suggests that there is likely to be a large number of previously unexplored interactions which add to the RTK intracellular interactome.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
August 2024
Mollusks, including snails, possess two chambered hearts. The heart and cardiomyocytes of snails have many similarities with those of mammals. Also, the biophysics and pharmacology of Ca, K, and Na ion channels resemble.
View Article and Find Full Text PDFCancer cell invasion is a precondition for tumour metastasis and represents one of the most devastating characteristics of cancer. The development of drugs targeting cell migration, known as migrastatics, may improve the treatment of highly invasive tumours such as glioblastoma (GBM). In this study, investigations into the role of the cell adhesion protein Cellular communication network factor 1 (CCN1, also known as CYR61) in GBM cell migration uncovered a drug resistance mechanism adopted by cells when treated with the small molecule inhibitor CCG-1423.
View Article and Find Full Text PDFReceptor tyrosine kinases (RTKs) are highly regulated, single pass transmembrane proteins, fundamental to cellular function and survival. Aberrancies in regulation lead to corruption of signal transduction and a range of pathological outcomes. Although control mechanisms associated with the receptors and their ligands are well understood, little is known with respect to the impact of lipid/lipid and lipid/protein interactions in the proximal plasma membrane environment.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC), which ranks forth on the cancer-related death statistics still is both a diagnostic and a therapeutic challenge. Adenocarcinoma of the exocrine human pancreas originates in most instances from malignant transformation of ductal epithelial cells, alternatively by Acinar-Ductal Metaplasia (ADM). RA-96 antibody targets to a mucin M1, according to the more recent nomenclature MUC5AC, an extracellular matrix component excreted by PDAC cells.
View Article and Find Full Text PDFThe limitations of two-dimensional analysis in three-dimensional (3D) cellular imaging impair the accuracy of research findings in biological studies. Here, we report a novel 3D approach to acquisition, analysis and interpretation of tumour spheroid images. Our research interest in mesenchymal-amoeboid transition led to the development of a workflow incorporating the generation and analysis of 3D data with instant structured illumination microscopy and a new ImageJ plugin.
View Article and Find Full Text PDFBackground: Nanoparticle imaging and tracking the release of the loaded material from the nanoparticle system have attracted significant attention in recent years. If the release of the loaded molecules could be monitored reliably in vivo, it would speed up the development of drug delivery systems remarkably.
Methods: Here, we test a system that uses indocyanine green (ICG) as a fluorescent agent for studying release kinetics in vitro and in vivo from the lipid iron nanoparticle delivery system.
It is unclear how changes in lipid droplet size and number are regulated - for example, it is not known whether this involves a signalling pathway or is directed by cellular lipid uptake. Here, we show that oleic acid stimulates lipid droplet formation by activating the long-chain fatty acid receptor FFAR4, which signals through a pertussis-toxin-sensitive G-protein signalling pathway involving phosphoinositide 3-kinase (PI3-kinase), AKT (also known as protein kinase B) and phospholipase D (PLD) activities. This initial lipid droplet formation is not dependent upon exogenous lipid, whereas the subsequent more sustained increase in the number of lipid droplets is dependent upon lipid uptake.
View Article and Find Full Text PDFSucrase-isomaltase (SI) is a highly N- and O-glycosylated intestinal brush border membrane protein. SI is sorted with high fidelity to the apical membrane via O-linked glycans that mediate its association with lipid rafts or detergent-resistant membranes (DRMs). Here, we show that N- and O-glycosylation and DRMs are implicated in the regulation of the function of SI in intestinal Caco-2 cells.
View Article and Find Full Text PDF