Designing electrocatalysts with optimal activity and selectivity relies on a thorough understanding of the surface structure under reaction conditions. In this study, experimental and computational approaches are combined to elucidate reconstruction processes on low-index Pd surfaces during H-insertion following proton electroreduction. While electrochemical scanning tunneling microscopy clearly reveals pronounced surface roughening and morphological changes on Pd(111), Pd(110), and Pd(100) surfaces during cyclic voltammetry, a complementary analysis using inductively coupled plasma mass spectrometry excludes Pd dissolution as the primary cause of the observed restructuring.
View Article and Find Full Text PDFUnsupported nanoparticles are now recognized as model catalysts to evaluate the intrinsic activity of metal particles, irrespectively of that of the support. Co nanoparticles with different morphologies, rods, diabolos and cubes have been prepared by the polyol process and tested for the acceptorless catalytic dehydrogenation of alcohols under solvent-free conditions. Rods crystallize with the pure hcp structure, diabolos with a mixture of hcp and fcc phases, while the cubes crystallize in a complex mixture of hcp, fcc and ε-Co phases.
View Article and Find Full Text PDF