In ectotherms, the performance of physiological, ecological and life-history traits universally increases with temperature to a maximum before decreasing again. Identifying the most appropriate thermal performance model for a specific trait type has broad applications, from metabolic modelling at the cellular level to forecasting the effects of climate change on population, ecosystem and disease transmission dynamics. To date, numerous mathematical models have been designed, but a thorough comparison among them is lacking.
View Article and Find Full Text PDFBody size reduction is a universal response to warming, but its ecological consequences across biological levels, from individuals to ecosystems, remain poorly understood. Most biological processes scale with body size, and warming-induced changes in body size can therefore have important ecological consequences. To understand these consequences, we propose a unifying, hierarchical framework for the ecological impacts of intraspecific body size reductions due to thermal plasticity that explicitly builds on three key pathways: morphological constraints, bioenergetic constraints and surface-to-volume ratio.
View Article and Find Full Text PDFNutrient enrichment and climate warming threaten freshwater systems. Metabolic theory and the paradox of enrichment predict that both stressors independently can lead to simpler food-webs having fewer nodes, shorter food-chains and lower connectance, but cancel each other's effects when simultaneously present. Yet, these theoretical predictions remain untested in complex natural systems.
View Article and Find Full Text PDFAim: Thermal sensitivity of cellular metabolism is crucial for animal physiology and survival under climate change. Despite recent efforts, effects of multigenerational exposure to temperature on the metabolic functioning remain poorly understood. We aimed at determining whether multigenerational exposure to temperature modulate the mitochondrial respiratory response of Medaka fish.
View Article and Find Full Text PDFBody size shifts in ectotherms are mostly attributed to the Temperature Size Rule (TSR) stating that warming speeds up initial growth rate but leads to smaller size when food does not limit growth. Investigating the links between temperature, growth, and life history traits is key to understand the adaptive value of TSR, which might be context dependent. In particular, global warming can affect food quantity or quality which is another major driver of growth, fecundity, and survival.
View Article and Find Full Text PDFSpecies invasions are predicted to increase in frequency with global change, but quantitative predictions of how environmental filters and species traits influence the success and consequences of invasions for local communities are lacking. Here we investigate how invaders alter the structure, diversity and stability regime of simple communities across environmental gradients (habitat productivity, temperature) and community size structure. We simulate all three-species trophic modules (apparent and exploitative competition, trophic chain and intraguild predation).
View Article and Find Full Text PDFWhile many efforts have been devoted to understand variations in food web structure among terrestrial and aquatic ecosystems, the environmental factors influencing food web structure at large spatial scales remain hardly explored. Here, we compiled biodiversity inventories to infer food web structure of 67 French lakes using an allometric niche-based model and tested how environmental variables (temperature, productivity, and habitat) influence them. By applying a multivariate analysis on 20 metrics of food web topology, we found that food web structural variations are represented by two distinct complementary and independent structural descriptors.
View Article and Find Full Text PDFTemperature and nutrients are two of the most important drivers of global change. Both can modify the elemental composition (i.e.
View Article and Find Full Text PDFSpecies may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water flea .
View Article and Find Full Text PDFWhile ecological interactions have been identified as determinant for biological control efficiency, the role of evolution remains largely underestimated in biological control programs. With the restrictions on the use of both pesticides and exotic biological control agents (BCAs), the evolutionary optimization of local BCAs becomes central for improving the efficiency and the resilience of biological control. In particular, we need to better account for the natural processes of evolution to fully understand the interactions of pests and BCAs, including in biocontrol strategies integrating human manipulations of evolution (i.
View Article and Find Full Text PDFLadybirds (Coleoptera: Coccinellidae) provide services that are critical to food production, and they fulfill an ecological role as a food source for predators. The richness, abundance, and distribution of ladybirds, however, are compromised by many anthropogenic threats. Meanwhile, a lack of knowledge of the conservation status of most species and the factors driving their population dynamics hinders the development and implementation of conservation strategies for ladybirds.
View Article and Find Full Text PDFThe balance of energetic losses and gains is of paramount importance for understanding and predicting the persistence of populations and ecosystem processes in a rapidly changing world. Previous studies suggested that metabolic rate often increases faster with warming than resource ingestion rate, leading to an energetic mismatch at high temperature. However, little is known about the ecological consequences of this energetic mismatch for population demography and ecosystem functions.
View Article and Find Full Text PDFPhenotypic plastic responses to temperature can modulate the kinetic effects of temperature on biological rates and traits and thus play an important role for species adaptation to climate change. However, there is little information on how these plastic responses to temperature can influence trophic interactions. Here, we conducted an experiment using marbled crayfish and their water louse prey to investigate how short-term thermal acclimation at two temperatures (16 and 24°C) modulates the predator functional response.
View Article and Find Full Text PDFWarming and eutrophication negatively affect freshwater ecosystems by modifying trophic interactions and increasing water turbidity. We need to consider their joint effects on predator-prey interactions and how these depend on the thermal evolution of both predator and prey. We quantified how 4°C warming and algae-induced turbidity (that integrates turbidity per se and increased food for zooplankton prey) affect functional response parameters and prey population parameters in a common-garden experiment.
View Article and Find Full Text PDFThe balance between risk and benefit of exploiting resources drives life-history evolution in organisms. Predators are naturally recognized as major drivers of the life-history evolution of their prey. Although prey may also influence the life-history evolution of their predators in the context of an evolutionary arms race, there is far more evidence of the role of predators than of prey.
View Article and Find Full Text PDFMost research on eco-evolutionary feedbacks focuses on ecological consequences of evolution in a single species. This ignores the fact that evolution in response to a shared environmental factor in multiple species involved in interactions could alter the net cumulative effect of evolution on ecology. We empirically tested whether urbanization-driven evolution in a predator (nymphs of the damselfly Ischnura elegans) and its prey (the water flea Daphnia magna) jointly shape the outcome of predation under simulated heatwaves.
View Article and Find Full Text PDFPredation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates.
View Article and Find Full Text PDFChanges in temperature affect consumer-resource interactions, which underpin the functioning of ecosystems. However, existing studies report contrasting predictions regarding the impacts of warming on biological rates and community dynamics. To improve prediction accuracy and comparability, we develop an approach that combines sensitivity analysis and aggregate parameters.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
October 2021
Eco-evolutionary dynamics can mediate species and community responses to habitat warming and fragmentation, two of the largest threats to biodiversity and ecosystems. The eco-evolutionary consequences of warming and fragmentation are typically studied independently, hindering our understanding of their simultaneous impacts. Here, we provide a new perspective rooted in trade-offs among traits for understanding their eco-evolutionary consequences.
View Article and Find Full Text PDFClimate warming and biological invasions are key drivers of biodiversity change. Their combined effects on ecological communities remain largely unexplored. We investigated the direct and indirect influences of temperature on invasion success, and their synergistic effects on community structure and dynamics.
View Article and Find Full Text PDFTemperature has numerous effects on the structure and dynamics of ecological communities. Yet, there is no general trend or consensus on the magnitude and directions of these effects. To fill this gap, we propose a mechanistic framework based on key biological rates that predicts how temperature influences biomass distribution and trophic control in food webs.
View Article and Find Full Text PDFPredation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra- and interspecific variation in predator-prey body size ratios are lacking.
View Article and Find Full Text PDFTrophic cascades - the indirect effect of predators on non-adjacent lower trophic levels - are important drivers of the structure and dynamics of ecological communities. However, the influence of intraspecific trait variation on the strength of trophic cascade remains largely unexplored, which limits our understanding of the mechanisms underlying ecological networks. Here we experimentally investigated how intraspecific difference among herbivore lineages specialized on different host plants influences trophic cascade strength in a terrestrial tri-trophic system.
View Article and Find Full Text PDFA vast body of research demonstrates that many ecological and evolutionary processes can only be understood from a tri-trophic viewpoint, that is, one that moves beyond the pairwise interactions of neighbouring trophic levels to consider the emergent features of interactions among multiple trophic levels. Despite its unifying potential, tri-trophic research has been fragmented, following two distinct paths. One has focused on the population biology and evolutionary ecology of simple food chains of interacting species.
View Article and Find Full Text PDF