Publications by authors named "Arnaud Schleef"

Purpose: In computed tomography (CT) cardiovascular imaging, the numerous contrast injection protocols used to enhance structures make it difficult to gather training datasets for deep learning applications supporting diverse protocols. Moreover, creating annotations on noncontrast scans is extremely tedious. Recently, spectral CT's virtual-noncontrast images (VNC) have been used as data augmentation to train segmentation networks performing on enhanced and true-noncontrast (TNC) scans alike, while improving results on protocols absent of their training dataset.

View Article and Find Full Text PDF

Purpose: Recently, machine learning has outperformed established tools for automated segmentation in medical imaging. However, segmentation of cardiac chambers still proves challenging due to the variety of contrast agent injection protocols used in clinical practice, inducing disparities of contrast between cavities. Hence, training a generalist network requires large training datasets representative of these protocols.

View Article and Find Full Text PDF