To improve the therapeutic activity of inhaled glucocorticoids and reduce potential side effects, we designed a formulation combining the advantages of nanoparticles, which have an enhanced uptake by alveolar cells, allow targeted delivery and sustained drug release, as well as limited drug systemic passage, with those of microparticles, which display good alveolar deposition. Herein, a polymer-drug conjugate, poly(malic acid)-budesonide (PMAB), was first synthesized with either 11, 20, 33, or 43 mol% budesonide (drug:polymer from 1:8 to 3:4), the drug creating hydrophobic domains. The obtained conjugates self-assemble into nanoconjugates in water, yielding excellent drug loading of up to 73 wt%, with 80-100 nm diameters.
View Article and Find Full Text PDFUncontrolled inflammatory processes are at the root of numerous pathologies. Most recently, studies on confirmed COVID-19 cases have suggested that mortality might be due to virally induced hyperinflammation. Uncontrolled pro-inflammatory states are often driven by continuous positive feedback loops between pro-inflammatory signaling and oxidative stress, which cannot be resolved in a targeted manner.
View Article and Find Full Text PDFNative low-density lipoproteins (LDL) naturally accumulate at atherosclerotic lesions and are thought to be among the main drivers of atherosclerosis progression. Numerous nanoparticular systems making use of recombinant lipoproteins have been developed for targeting atherosclerotic plaque. These innovative formulations often require complicated purification and synthesis procedures which limit their eventual translation to the clinics.
View Article and Find Full Text PDFNanoformulated calix[8]arenes functionalized with -heterocyclic carbene (NHC)-palladium complexes were found to be efficient nano-reactors for Suzuki-Miyaura cross-coupling reactions of water soluble iodo- and bromoaryl compounds with cyclic triol arylborates at low temperature in water without any organic co-solvent. Combined with an improved one-step synthesis of triol arylborates from boronic acid, this remarkably efficient new tool provided a variety of 4'-arylated phenylalanines and tyrosines in good yields at low catalyst loading with a wide functional group tolerance.
View Article and Find Full Text PDFWe have developed new benign palladium nanoparticles able to catalyze the Suzuki-Miyaura cross-coupling reaction on human thyroglobulin (Tg), a naturally iodinated protein produced by the thyroid gland, in homogenates from patients' tissues. This represents the first example of a chemoselective native protein modification using transition metal nanoobjects in near-organ medium.
View Article and Find Full Text PDFA large variety of nanoparticle-based delivery systems have become increasingly important for diagnostic and/or therapeutic applications. Yet, the numerous physical and chemical parameters that influence both the biological and colloidal properties of nanoparticles remain poorly understood. This complicates the ability to reliably produce and deliver well-defined nanocarriers which often leads to inconsistencies, conflicts in the published literature and, ultimately, poor translation to the clinics.
View Article and Find Full Text PDFChemical transformations that can be performed selectively under physiological conditions are highly desirable tools to track biomolecules and manipulate complex biological processes. Here, we report a new nanocatalyst consisting of small palladium nanoparticles stabilized on the surface of PLGA-PEG nanoparticles that show excellent catalytic activity for the modification of biological building blocks through Suzuki-Miyaura cross-coupling reactions in water. Brominated or iodinated amino acids were coupled with aryl boronic acids in phosphate buffer in good yields.
View Article and Find Full Text PDF