Publications by authors named "Arnaud Pallotta"

Taylor dispersion analysis (TDA) is a technique dedicated to the determination of the molecular diffusion coefficient (D) of species, using band broadening of an analyte in a laminar flow. Two modes are commonly used to perform TDA: pulse and frontal modes. In each case, a fitting of the signal is required.

View Article and Find Full Text PDF

Taylor dispersion analysis (TDA) is an interesting tool for nanoparticle (NP) size determination, feasible using simple capillary electrophoresis apparatus. Based upon the radial diffusion of analytes upon a laminar stream, the diffusion coefficient of species is easily estimable. Moreover, TDA is generally more adequate than conventional dynamic light scattering methodologies as it is less dependent on the polydispersity of the sample, leading to accurate measurement and reliable results.

View Article and Find Full Text PDF

Thiols are very important molecules in the biomedical field involved for example in redox homeostasis. Their detection and quantification remain difficult due to their poor stability (oxidation) linked to their strong reactivity towards other thiols (by the formation of S-S bonds) or other interfering molecules in the medium. Cellulose membranes with immobilized gold nanoparticles (AuNP) were developed to capture and quantify thiols in simple and complex matrices.

View Article and Find Full Text PDF

The design of layer-by-layer (LbL) polyelectrolyte films including nanoparticles is a growing field of innovation in a wide range of biomedical applications. Gold nanoparticles (AuNPs) are very attractive for further biomolecule coupling to induce a pharmacological effect. Nanostructured LbL films coupled with such metallic species show properties that depend on the conditions of construction, i.

View Article and Find Full Text PDF

Gold nanoparticle (AuNP) interaction with the blood compartment as a function of their charge and the binding energy of their surface ligand was explored. Citrate, polyallylamine and cysteamine stabilized AuNP along with dihydrolipoic acid and polyethylene glycol capped AuNP were synthesized and fully characterized. Their interactions with model proteins (human albumin and human fibrinogen) were studied.

View Article and Find Full Text PDF

Nanoparticles are being developed for a wide range of medical applications such as, controlled release, drug delivery systems or imagery, theranostics, implants…. For the moment, there is no legal definition of nanoparticles or nanomaterials for therapeutic use. The specific case of gold nanoparticles is not an exception: their current definition as nanoparticle material does not correspond to classic pharmaceutical ingredients as described in Pharmacopoeias.

View Article and Find Full Text PDF

Many novel medical devices (implantable or not) include nanomaterials through either surface-coating by nanoparticles or by direct nanostructuration of the surface. In this review, we have identified several medical devices currently on the market in various health domains (wound healing, prevention or treatment of infectious diseases, cardio-vascular diseases, organ or joint replacement, and finally medical devices associated with nanomedicines). The very peculiar physicochemical characterization of the nanostructured medical devices is described.

View Article and Find Full Text PDF

A simple isocratic HPLC method using visible detection was developed and validated for the quantification of gold in nanoparticles (AuNP). After a first step of oxidation of nanoparticles, an ion-pair between tetrachloroaurate anion and the cationic dye Rhodamine B was formed and extracted from the aqueous media with the help of an organic solvent. The corresponding Rhodamine B was finally quantified by reversed phase liquid chromatography using a Nucleosil C18 (150mm × 4.

View Article and Find Full Text PDF

Four kinds of gold nanoparticles (AuNP) quite similar in terms of gold core size (ca. 5nm) and shape (spherical) but differing by their surface chemistry (either negatively, or positively charged, or neutral) were synthesized. They were analyzed using both the classical physicochemical approach (spectrophotometry, dynamic light scattering coupled or not to electrophoresis and transmission electron microscopy) and capillary zone electrophoresis equipped with photodiode array detection.

View Article and Find Full Text PDF

Background: Nitric oxide (NO) is a gaseous transmitter playing numerous physiological roles and characterized by a short half-life. Its binding to endogenous thiols increases its stability, facilitating its storage and transport. The purpose of this study was to investigate the nitrosated serum albumin (SA-SNO) and to provide a reference for its easy preparation for further use in in vitro studies.

View Article and Find Full Text PDF