Publications by authors named "Arnaud Mignan"

Extreme disasters, defined as low-probability-high-consequences events, are often due to cascading effects combined to amplifying environmental factors. While such a risk complexity is commonly addressed by the modeling of site-specific multi-risk scenarios, there exists no harmonized approach that considers the full space of possibilities, based on the general relationships between the environment and the perils that populate it. In this article, I define the concept of a for multi-risk R&D and prototyping in the Generic Multi-Risk (GenMR) framework.

View Article and Find Full Text PDF

The literature on probabilistic hazard and risk assessment shows a rich and wide variety of modeling strategies tailored to specific perils. On one hand, catastrophe (CAT) modeling, a recent professional and scientific discipline, provides a general structure for the quantification of natural (e.g.

View Article and Find Full Text PDF

Organized into a global network of critical infrastructures, the oil & gas industry remains to this day the main energy contributor to the world's economy. Severe accidents occasionally occur resulting in fatalities and disruption. We build an oil & gas accident graph based on more than a thousand severe accidents for the period 1970-2016 recorded for refineries, tankers, and gas networks in the authoritative ENergy-related Severe Accident Database (ENSAD).

View Article and Find Full Text PDF

Some of the most devastating natural events on Earth, such as earthquakes and tropical cyclones, are prone to trigger other natural events, critical infrastructure failures, and socioeconomic disruptions. Man-made disasters may have similar effects, although to a lesser degree. We investigate the space of possible interactions between 19 types of loss-generating events, first by encoding possible one-to-one interactions into an adjacency matrix A, and second by calculating the interaction matrix M of emergent chains-of-events.

View Article and Find Full Text PDF

With the unfolding of the COVID-19 pandemic, mathematical modelling of epidemics has been perceived and used as a central element in understanding, predicting, and governing the pandemic event. However, soon it became clear that long-term predictions were extremely challenging to address. In addition, it is still unclear which metric shall be used for a global description of the evolution of the outbreaks.

View Article and Find Full Text PDF

The hypothesis that earthquake foreshocks have a prognostic value is challenged by simulations of the normal behaviour of seismicity, where no distinction between foreshocks, mainshocks and aftershocks can be made. In the former view, foreshocks are passive tracers of a tectonic preparatory process that yields the mainshock (i.e.

View Article and Find Full Text PDF