Neurol Neuroimmunol Neuroinflamm
November 2024
Motivation: In the field of oncology, statistical models are used for the discovery of candidate factors that influence the development of the pathology or its outcome. These statistical models can be designed in a multiblock framework to study the relationship between different multiomic data, and variable selection is often achieved by imposing constraints on the model parameters. A priori graph constraints have been used in the literature as a way to improve feature selection in the model, yielding more interpretability.
View Article and Find Full Text PDFExtensive heterogeneity in autism spectrum disorder (ASD) has hindered the characterization of consistent biomarkers, which has led to widespread negative results. Isolating homogenized subtypes could provide insight into underlying biological mechanisms and an overall better understanding of ASD. A total of 1093 participants from the population-based "Healthy Brain Network" cohort (Child Mind Institute in the New York City area, USA) were selected based on score availability in behaviors relevant to ASD, aged 6-18 and IQ >= 70.
View Article and Find Full Text PDFRegularized generalized canonical correlation analysis (RGCCA) is a general multiblock data analysis framework that encompasses several important multivariate analysis methods such as principal component analysis, partial least squares regression, and several versions of generalized canonical correlation analysis. In this article, we extend RGCCA to the case where at least one block has a tensor structure. This method is called multiway generalized canonical correlation analysis (MGCCA).
View Article and Find Full Text PDFBackground: Actionable fibroblast growth factor receptor 3 (FGFR3)-transforming acidic coiled-coil protein 3 fusions (F3T3) are found in approximately 3% of gliomas, but their characteristics and prognostic significance are still poorly defined. Our goal was to characterize the clinical, radiological, and molecular profile of F3T3 positive diffuse gliomas.
Methods: We screened F3T3 fusion by real-time (RT)-PCR and FGFR3 immunohistochemistry in a large series of gliomas, characterized for main genetic alterations, histology, and clinical evolution.
We propose a new sparsification method for the singular value decomposition-called the constrained singular value decomposition (CSVD)-that can incorporate multiple constraints such as sparsification and orthogonality for the left and right singular vectors. The CSVD can combine different constraints because it implements each constraint as a projection onto a convex set, and because it integrates these constraints as projections onto the intersection of multiple convex sets. We show that, with appropriate sparsification constants, the algorithm is guaranteed to converge to a stable point.
View Article and Find Full Text PDF