Stem cells (SCs) are critical to maintain tissue homeostasis. However, it is currently not known whether signaling through cell junctions protects quiescent epithelial SC reservoirs from depletion during disease-inflicted damage. Using the autoimmune model disease pemphigus vulgaris (PV), this study reveals an unprecedented role for a desmosomal cadherin in governing SC quiescence and regeneration through adhesion signaling in the multipotent mouse hair follicle compartment known as the bulge.
View Article and Find Full Text PDFEpigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation.
View Article and Find Full Text PDFBackground: Thymic stromal lymphopoietin (TSLP) plays a key role in the development of allergic inflammation. Little is known about possible triggers of equine TSLP expression.
Hypothesis/objectives: To investigate TSLP expression in equine insect bite hypersensitivity (IBH) skin lesions.
FAM83G/Fam83g genetic variants have been described in dogs, mice and recently also in humans. They are associated with palmoplantar keratoderma and altered hair or coat phenotype, reported as wooly phenotype in mice. FAM83G/Fam83g is an unexplored effector of temporally and spatially coordinated Wnt and BMP signalling which are key pathways in pre- and postnatal hair follicle morphogenesis and differentiation.
View Article and Find Full Text PDFThe potentially severe side effects of systemic corticosteroids and immunosuppressants used in Pemphigus vulgaris (PV) call for novel therapeutic approaches. In this context, pharmacological inhibition of major pathogenic signalling effectors represents a promising alternative. However, we have also shown that overinhibition of effectors required for epidermal homeostasis can exacerbate PV pathophysiology implicating transepidermal keratinocyte fragility.
View Article and Find Full Text PDFKeratins represent a large protein family with essential structural and functional roles in epithelial cells of skin, hair follicles, and other organs. During evolution the genes encoding keratins have undergone multiple rounds of duplication and humans have two clusters with a total of 55 functional keratin genes in their genomes. Due to the high similarity between different keratin paralogs and species-specific differences in gene content, the currently available keratin gene annotation in species with draft genome assemblies such as dog and horse is still imperfect.
View Article and Find Full Text PDFIchthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function.
View Article and Find Full Text PDFWe investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed "brindle" by horse breeders. We propose the term "brindle 1 (BR1)" for this specific form of brindle.
View Article and Find Full Text PDFX-linked hypohidrotic ectodermal dysplasia (XLHED) caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene.
View Article and Find Full Text PDFFunctional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs.
View Article and Find Full Text PDFThe majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process.
View Article and Find Full Text PDFJ Invest Dermatol
January 2014
Disruption of desmosomal cadherin adhesion leads to the activation of intracellular signaling pathways that are responsible for blister formation in pemphigus vulgaris (PV). Recent studies corroborate the implication of the p38 mitogen-activated protein kinase in PV blistering via its downstream effector mitogen-activated protein kinase activated protein kinase 2. These insights highlight the key role of cadherins in tissue homeostasis and are expected to change pemphigus management.
View Article and Find Full Text PDFNovel insights into intra-cellular signalling involved in pemphigus vulgaris (PV), an autoimmune blistering disease of skin and mucous membranes, are now revealing new therapeutic approaches such as the chemical inhibition of PV-associated signals in conjunction with standard immunosuppressive therapy. However, extensive inhibition of signalling molecules that are required for normal tissue function and integrity may hamper this approach. Using a neonatal PV mouse model, we demonstrate that epidermal blistering can be prevented in a dose-dependent manner by clinically approved EGFR inhibitors erlotinib and lapatinib, but only up to approximately 50% of normal EGFR activity.
View Article and Find Full Text PDFHereditary nasal parakeratosis (HNPK), an inherited monogenic autosomal recessive skin disorder, leads to crusts and fissures on the nasal planum of Labrador Retrievers. We performed a genome-wide association study (GWAS) using 13 HNPK cases and 23 controls. We obtained a single strong association signal on chromosome 2 (p(raw) = 4.
View Article and Find Full Text PDFEvidence has accumulated that changes in intracellular signaling downstream of desmoglein 3 (Dsg3) may have a significant role in epithelial blistering in the autoimmune disease pemphigus vulgaris (PV). Currently, most studies on PV involve passive transfer of pathogenic antibodies into neonatal mice that have not finalized epidermal morphogenesis, and do not permit analysis of mature hair follicles (HFs) and stem cell niches. To investigate Dsg3 antibody-induced signaling in the adult epidermis at defined stages of the HF cycle, we developed a model with passive transfer of AK23 (a mouse monoclonal pathogenic anti-Dsg3 antibody) into adult 8-week-old C57Bl/6J mice.
View Article and Find Full Text PDFFilaggrin loss-of-function mutations resulting in C-terminal protein truncations are strong predisposing factors in human atopic dermatitis (AD). To assess the possibility of similar truncations in canine AD, an exclusion strategy was designed on 16 control and 18 AD dogs of various breeds. Comparative immunofluorescence microscopy was performed with an antibody raised against the canine filaggrin C-terminus and a commercial N-terminal antibody.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is characterized by brain accumulation of the amyloid-beta peptide (Abeta) that triggers a cascade of biochemical and cellular alterations resulting in the clinical phenotype of the disease. While numerous experiments addressed Abeta toxicity, the mechanisms are still not fully understood. The receptor for advanced glycation end products (RAGE) binds Abeta and was suggested to be involved in the pathological processes of AD.
View Article and Find Full Text PDFIn the genesis of Alzheimer's disease (AD), converging lines of evidence suggest that amyloid-beta peptide (Abeta) triggers a pathogenic cascade leading to neuronal loss. It was long assumed that Abeta had to be assembled into extracellular amyloid fibrils or aggregates to exert its cytotoxic effects. Over the past decade, characterization of soluble oligomeric Abeta species in the brains of AD patients and in transgenic models has raised the possibility that different conformations of Abeta may contribute to AD pathology via different mechanisms.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2008
The receptor for advanced glycation endproducts (RAGE) interacts with several ligands and is involved in various human diseases. RAGE_v1 or sRAGE, a RAGE splice variant, is secreted and contributes to the removal of RAGE ligands. Because RAGE blockade by specific antibodies directed against RAGE extracellular domains and the use of sRAGE have been proven to be beneficial in the context of pathological settings, both RAGE and sRAGE are considered as therapeutic target.
View Article and Find Full Text PDFCytokinins regulate cell division and differentiation as well as a number of other processes implicated in plant development. The first step of cytokinin biosynthesis in Arabidopsis (Arabidopsis thaliana) is catalyzed by adenosine phosphate-isopentenyltransferases (AtIPT). The enzymes are localized in plastids or the cytoplasm where they utilize the intermediate dimethylallyl-diphosphate from the methylerythritolphosphate or mevalonic acid pathways.
View Article and Find Full Text PDFS100 proteins are EF-hand calcium-binding proteins with various intracellular functions including cell proliferation, differentiation, migration, and apoptosis. Some S100 proteins are also secreted and exert extracellular paracrine and autocrine functions. Experimental results suggest that the receptor for advanced glycation end products (RAGE) plays important roles in mediating S100 protein-induced cellular signaling.
View Article and Find Full Text PDFNervous system development and plasticity require regulation of cell proliferation, survival, neurite outgrowth and synapse formation by specific extracellular factors. The EF-hand protein S100B is highly expressed in human brain. In the extracellular space, it promotes neurite extension and neuron survival via the receptor RAGE (receptor for advanced glycation end products).
View Article and Find Full Text PDFIn multicellular organisms, organogenesis requires tight control and coordination of cell proliferation, cell expansion, and cell differentiation. We have identified Arabidopsis (Arabidopsis thaliana) nucleosome assembly protein 1 (AtNAP1;1) as a component of a regulatory mechanism that connects cell proliferation to cell growth and expansion during Arabidopsis leaf development. Molecular, biochemical, and kinetic studies of AtNAP1;1 gain- or loss-of-function mutants indicate that AtNAP1;1 promotes cell proliferation or cell expansion in a developmental context and as a function of the farnesylation status of the protein.
View Article and Find Full Text PDFOrgan growth results from the progression of component cells through subsequent phases of proliferation and expansion before reaching maturity. We combined kinematic analysis, flowcytometry, and microarray analysis to characterize cell cycle regulation during the growth process of leaves 1 and 2 of Arabidopsis (Arabidopsis thaliana). Kinematic analysis showed that the epidermis proliferates until day 12; thereafter, cells expand until day 19 when leaves reach maturity.
View Article and Find Full Text PDF