Gold nanoclusters (AuNCs) are an emerging type of luminescent probe, featuring good biocompatibility, high photostability, and large Stoke shifts. Their lack of colloidal stability is, however, a drawback for many applications. Here, we report the stabilization of AuNCs emitting in the NIR by a thiol-terminated polystyrene chain ( = 5000 g mol).
View Article and Find Full Text PDFNanopore techniques are now widely used to sequence DNA, RNA and even oligopeptide molecules at the base pair level by measuring the ionic current. In order to build a more versatile characterisation system, optical methods for the detection of a single molecule translocating through a nanopore have been developed, achieving very promising results. In this work, we developed a series of tools to interpret the optical signals in terms of the physical behaviour of various types of natural and synthetic polymers, with high throughput.
View Article and Find Full Text PDFNucleolin is a multifunctional protein involved in essential biological processes. To precisely localize it and unravel its different roles in cells, fluorescence imaging is a powerful tool, especially super-resolution techniques. Here, we developed polymer-aptamer probes, both small and bright, adapted to direct stochastic optical reconstruction microscopy (dSTORM).
View Article and Find Full Text PDFThe development of innovative immune cell therapies relies on efficient cell tracking strategies. For this, multiscale fluorescence-based analyses of transferred cells into the host with complementary techniques, including flow cytometry for high-throughput cell analysis and two-photon microscopy for deep tissue imaging would be highly beneficial. Ideally, cells should be labelled with a single fluorescent probe combining all the properties required for these different techniques.
View Article and Find Full Text PDFMALDI-TOF mass spectrometry analyses revealed the oxidation of thiol-containing polymer chain-ends during sample preparation using THF as solvent. In these conditions, the extent of oxidation was hardly reproducible, and led to various types of oxidized compounds. Preparing the samples at the last minute using commercial THF stabilized with an antioxidant led to more reproducible results, with the least oxidation.
View Article and Find Full Text PDFDirect stochastic optical reconstruction microscopy (dSTORM), developed in the last decade, has revolutionised optical microscopy by enabling scientists to visualise objects beyond the resolution provided by conventional microscopy (200 nm). We developed an innovative method based on blinking particle standards and conditions for long-lived imaging over several weeks. Stable localisation precisions within the 10 nm-range were achieved for single virions and in cellulo 2D imaging of centrosomes, as well as their reliable reconstruction in 3D dSTORM.
View Article and Find Full Text PDFWe report the site-specific and covalent bioconjugation of fluorescent polymer chains to proteins in live cells using the HaloTag technology. Polymer chains bearing a Halo-ligand precisely located at their α-chain-end were synthesized in a controlled manner owing to the RAFT polymerization process. They were labeled in lateral position by several organic fluorophores such as AlexaFluor 647.
View Article and Find Full Text PDFOne of the challenges of photodynamic therapy is to increase the penetration depth of light irradiation in the tumor tissues. Although two-photon excitation strategies have been developed, the two-photon absorption cross sections of clinically used photosensitizers are generally low (below 300 GM). Besides, photosensitizers with high cross section values are often non-water-soluble.
View Article and Find Full Text PDFA new class of "polymultivalent" ligands combining several ligand clusters and a water-soluble biocompatible polymer is introduced. These original conjugates bear two levels of multivalency. They are prepared by covalent coupling of a controlled number of tetrameric cRGD peptide clusters along a well-defined copolymer synthesized by RAFT polymerization.
View Article and Find Full Text PDFFar-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness.
View Article and Find Full Text PDFExogenous probes with far-red or near-infrared (NIR) two-photon absorption and fluorescence emission are highly desirable for deep tissue imaging while limiting autofluorescence. However, molecular probes exhibiting such properties are often hydrophobic. As an attractive alternative, we synthesized water-soluble polymer probes carrying multiple far-red fluorophores and demonstrated here their potential for live cell and zebrafish embryo imaging.
View Article and Find Full Text PDFWe describe the design of original nanocarriers that allows for ultrahigh chromophore loading while maintaining the photo-activity of each individual molecule. They consist in shells of charged biocompatible polymers grafted on gold nanospheres. The self-organization of extended polymer chains results from repulsive charges and steric interactions that are optimized by tuning the surface curvature of nanoparticles.
View Article and Find Full Text PDF