Publications by authors named "Arnaud Duverger"

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Rationale: The analysis of the three sulfur stable isotope ratios (S/S, S/S, S/S) is routinely performed by gas-source isotope ratio mass spectrometry (IRMS) on the SF gaseous molecule, collecting SF ions at m/z ~ 127, 128, 129 and 131. High precision and accuracy are commonly achieved owing to a lack of correction because fluorine has only one isotope and the inert nature of the SF molecule. The analysis of the S/S ratio is, however, complicated by the low abundance of S (~0.

View Article and Find Full Text PDF

Sedimentary pyrite (FeS) is commonly thought to be a product of microbial sulfate reduction and hence may preserve biosignatures. However, proof that microorganisms are involved in pyrite formation is still lacking as only metastable iron sulfides are usually obtained in laboratory cultures. Here we show the rapid formation of large pyrite spherules through the sulfidation of Fe(III)-phosphate (FP) in the presence of a consortium of sulfur- and sulfate-reducing bacteria (SRB), Desulfovibrio and Sulfurospirillum, enriched from ferruginous and phosphate-rich Lake Pavin water.

View Article and Find Full Text PDF

Both iron- and sulfur- reducing bacteria strongly impact the mineralogy of iron, but their activity has long been thought to be spatially and temporally segregated based on the higher thermodynamic yields of iron over sulfate reduction. However, recent evidence suggests that sulfur cycling can predominate even under ferruginous conditions. In this study, we investigated the potential for bacterial iron and sulfur metabolisms in the iron-rich (1.

View Article and Find Full Text PDF