Publications by authors named "Arnaud Desmedt"

Article Synopsis
  • * In a study using advanced imaging techniques, it was observed that surfactant-promoted methane hydrates form hollow crystals that contribute to a porous structure, with significant insights gained across multiple scales of observation.
  • * The comparison of two surfactants, SDS and AOT, revealed that while AOT promotes faster hydrate formation, it is less effective for long-term gas storage compared to SDS, which is better suited for that purpose; both surfactants do not alter the cage filling of methane hydrate.
View Article and Find Full Text PDF

Our recent Communication suggested that ammonia in aqueous solution may preferentially destabilize large cages in methane clathrate hydrates. A Comment favored ammonia incorporation instead, but it did not accurately describe our proposed mechanism and relied primarily on studies conducted in different chemical systems and/or which used other preparation methods.

View Article and Find Full Text PDF

Among hydrogen storage materials, hydrogen hydrates have received a particular attention over the last decades. The pure hydrogen hydrate is generated only at extremely high-pressure (few thousands of bars) and the formation conditions are known to be softened by co-including guest molecules such as tetrahydrofuran (THF). Since this discovery, there have been considerable efforts to optimize the storage capacities in hydrates through the variability of the formation condition, of the cage occupancy, of the chemical composition or of the hydrate structure (ranging from clathrate to semi-clathrate).

View Article and Find Full Text PDF

The incorporation of ammonia inside methane clathrate hydrate is of great interest to the hydrate chemistry community. We investigated the phase behavior of methane clathrate formed from aqueous ammonia solution. Ammonia's presence decreases methane occupancy in the large cages, without definitive Raman spectroscopic evidence for its incorporation inside the structure.

View Article and Find Full Text PDF

We designed and implemented an experimental methodology to investigate gas hydrate formation and growth around a water-guest meniscus in a thin glass capillary, thus mimicking pore-scale processes in sediments. The glass capillary acts as a high-pressure optical cell in a range of supercooling conditions from 0.1 °C, i.

View Article and Find Full Text PDF

Clathrate hydrates are crystalline compounds consisting of water molecules forming cages (so-called "host") inside of which "guest" molecules are encapsulated depending on the thermodynamic conditions of formation (systems stable at low temperature and high pressure). These icelike systems are naturally abundant on Earth and are generally expected to exist on icy celestial bodies. Carbon monoxide hydrate might be considered an important component of the carbon cycle in the solar system since CO gas is one of the predominant forms of carbon.

View Article and Find Full Text PDF

Hydrate-based CO2 trapping from CO2-N2 and CO2-CO gas mixtures is shown by Raman spectroscopy - the results are of interest for new separation and capture technology. A better trapping efficiency is measured for low CO2 concentrations and N2-based gas mixtures. Moreover, it is observed that CO molecules would impede hydrate formation from ice when a CO-enriched gas mixture is considered.

View Article and Find Full Text PDF

The hexafluorophosphoric acid clathrate hydrate is known as a "super-protonic" conductor: its proton conductivity is of the order of 0.1 S/cm at ca. room temperature.

View Article and Find Full Text PDF

Confocal Raman microspectrometry has been used as an in situ probe of the transport of guest molecules along the one-dimensional tunnels in a crystalline urea inclusion compound, under conditions of guest exchange in which "new" guest molecules (pentadecane) are introduced at one end of the tunnel and displace the "original" guest molecules (1,8-dibromooctane). The Raman spectra, recorded as a function of position along the tunnel direction and as a function of time, have been used to establish details of the kinetics of the guest transport process. In particular, the transport of the new pentadecane guest molecules along the tunnel is found to exhibit a linear dependence on time, with the rate of the process in the region of 70-100 nm s-1.

View Article and Find Full Text PDF

The chemical transformation of ammonium cyanate into urea has been of interest to many generations of scientists since its discovery by Friedrich Wöhler in 1828. Although widely studied both experimentally and theoretically, several mechanistic aspects of this reaction remain to be understood. In this paper, we apply computational methods to investigate the behavior of ammonium cyanate in the solid state under high pressure, employing a theoretical approach based on the self-consistent-charges density-functional tight-binding method (SCC-DFTB).

View Article and Find Full Text PDF

NH(4)(C(6)H(5))(4)B represents a prototypical system for understanding aromatic H bonds. In NH(4)(C(6)H(5))(4)B an ammonium cation is trapped in an aromatic cage of four phenyl rings and each phenyl ring serves as a hydrogen bond acceptor for the ammonium ion as donor. Here the dynamical properties of the aromatic hydrogen bond in NH(4)(C(6)H(5))(4)B were studied by quasielastic incoherent neutron scattering in a broad temperature range (20< or =T< or =350 K).

View Article and Find Full Text PDF

Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened.

View Article and Find Full Text PDF

Confocal Raman microspectrometry has been applied as an in situ probe of the transport of guest molecules along the one-dimensional tunnels in a crystalline urea inclusion compound, under conditions of guest exchange in which "new" guest molecules (pentadecane) are introduced at one end of the tunnel and displace the "original" guest molecules (1,8-dibromooctane). The Raman spectra, recorded as a function of position along the tunnel direction and as a function of time, demonstrate that the transport process is associated with a significant change in the conformational properties of the original (1,8-dibromooctane) guest molecules. In particular, in the boundary region between the original and new guest molecules, there is a substantial increase in the proportion of 1,8-dibromooctane guest molecules that have the gauche end-group conformation.

View Article and Find Full Text PDF

We report inelastic neutron scattering (INS) studies on a series of Mn(12) derivatives, [Mn(12)O(12)(O2CC6F5)16(H2O)4]z, in which the number of unpaired electrons in the cluster is varied. We investigated three oxidation levels: z = 0 for the neutral complex, z = -1 for the one-electron reduced species and z = -2 for the two-electron reduced complex. For z = 0, the ground state is S = 10 as in the prototypical Mn12-acetate.

View Article and Find Full Text PDF

In the perchloric acid clathrate hydrate HClO4.5.5H2O, the perchlorate anions are contained inside an aqueous host crystalline matrix, positively charged because of the presence of delocalized acidic protons.

View Article and Find Full Text PDF

Confocal Raman microspectrometry has been applied successfully as an in situ probe of the transport of guest molecules through the one-dimensional channel system in a crystalline inclusion compound, yielding insights into the spatial distribution of guest molecules and, in particular, the variation in the spatial distribution of the guest molecules as a function of time during the transport process.

View Article and Find Full Text PDF