In mammals, both sterile wounding and infection induce inflammation and activate the innate immune system, and the combination of both challenges may lead to severe health defects, revealing the importance of the balance between the intensity and resolution of the inflammatory response for the organism's fitness. Underlying mechanisms remain however elusive. Using Drosophila, we show that, upon infection with the entomopathogenic bacterium Pseudomonas entomophila (Pe), a sterile wounding induces a reduced resistance and increased host mortality.
View Article and Find Full Text PDFThe Hox family of transcription factors defines cell identity along the A/P axis of animal body plan by modulating expression of distinct sets of target genes in a tissue specific manner. Identifying such tissue specific target genes is indispensable if one wants to understand how Hox proteins mediate their context dependent function. Genome wide analysis of transcriptional activity in different tissues and contexts regarding Hox genes activity could help in reaching this goal.
View Article and Find Full Text PDFThe intestinal physiology of Drosophila melanogaster can be monitored in an integrative, non-invasive manner by analysing graphical features of the excreta produced by flies fed on a dye-supplemented diet. This assay has been used by various labs to explore gut function and its regulation. To facilitate its use, we present here a free, stand-alone dedicated software tool for the analysis of fly excreta.
View Article and Find Full Text PDFMost metazoans engage in mutualistic interactions with their intestinal microbiota. Despite recent progress the molecular mechanisms through which microbiota exerts its beneficial influences on host physiology are still largely uncharacterized. Here we use axenic Drosophila melanogaster adults associated with a standardized microbiota composed of a defined set of commensal bacterial strains to study the impact of microbiota association on its host transcriptome.
View Article and Find Full Text PDFGiven the complexity of the mammalian microbiota, there is a need for simple models to decipher the effector and regulatory mechanisms underlying host/microbiota mutualism. Approaches using Drosophila and its simple microbiota carry the potential to unravel the evolutionarily conserved mechanisms engaged in this association. Here, we review recent work carried out in this model, providing insights and exciting perspectives.
View Article and Find Full Text PDFThere is growing evidence that intestinal bacteria are important beneficial partners of their metazoan hosts. Recent observations suggest a strong link between commensal bacteria, host energy metabolism, and metabolic diseases such as diabetes and obesity. As a consequence, the gut microbiota is now considered a "host" factor that influences energy uptake.
View Article and Find Full Text PDFDrosophila phagocytes participate in development and immune responses through their abilities to perform phagocytosis and/or secrete extra-cellular matrix components, antimicrobial peptides, clotting factors and signalling molecules. However, our knowledge of their functional impact on development and host resistance to infection is limited. To address this, we have used a genetic cell ablation strategy to generate Drosophila individuals lacking functional phagocytes.
View Article and Find Full Text PDF