Publications by authors named "Arnas Survyla"

In this study, an automatic control system is developed for the setpoint control of the cell biomass specific growth rate (SGR) in fed-batch cultivation processes. The feedback signal in the control system is obtained from the oxygen uptake rate (OUR) measurement-based SGR estimator. The OUR online measurements adapt the system controller to time-varying operating conditions.

View Article and Find Full Text PDF

This study developed an estimation routine for counting the viable cells in an in vitro fed-batch Chinese hamster ovary cultivation that relies on off-gas information and inlet gas mixture knowledge. We computed the oxygen uptake rate bound to the bioreactor exhaust gas outlet when the inlet gas mixture was stationary. Our mammalian biosynthesis analysis determined the stoichiometric parameters as a function of the average population age.

View Article and Find Full Text PDF

The cell cultivation process in a bioreactor is a high-value manufacturing process that requires excessive monitoring and control compatibility. The specific cell growth rate is a crucial parameter that describes the online quality of the cultivation process. Most methods and algorithms developed for online estimations of the specific growth rate controls in batch and fed-batch microbial cultivation processes rely on biomass growth models.

View Article and Find Full Text PDF

Background: The focus of this study is online estimation of biomass concentration in fed-batch cultures. It describes a bioengineering software solution, which is explored for Escherichia coli and Saccharomyces cerevisiae fed-batch cultures. The experimental investigation of both cultures presents experimental validation results since the start of the bioprocess, i.

View Article and Find Full Text PDF

For historic reasons, industrial knowledge of reproducibility and restrictions imposed by regulations, open-loop feeding control approaches dominate in industrial fed-batch cultivation processes. In this study, a generic gray box biomass modeling procedure uses relative entropy as a key to approach the posterior similarly to how prior distribution approaches the posterior distribution by the multivariate path of Lagrange multipliers, for which a description of a nuisance time is introduced. The ultimate purpose of this study was to develop a numerical semi-global convex optimization procedure that is dedicated to the calculation of feeding rate time profiles during the fed-batch cultivation processes.

View Article and Find Full Text PDF