We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days.
View Article and Find Full Text PDFThe relationships between plants and endophytic bacteria significantly contribute to plant health and yield. However, the microbial diversity in leaves of Eucalyptus spp. is still poorly characterized.
View Article and Find Full Text PDFThe common bean is one of the most important legumes in the human diet, but little is known about the endophytic bacteria associated with the leaves of this plant. The objective of this study was to characterize the culturable endophytic bacteria of common bean (Phaseolus vulgaris) leaves from three different cultivars (Vermelhinho, Talismã, and Ouro Negro) grown under the same field conditions. The density of endophytic populations varied from 4.
View Article and Find Full Text PDFEctomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells.
View Article and Find Full Text PDFAn investigation of electrokinetic bacterial mobilisation in a residual soil from gneiss is presented here. The experimental program aimed at assessing the efficacy of electrophoresis against the electro-osmotic flow to transport endospores of Bacillus subtilis LBBMA 155 and nitrogen-starved cells of Pseudomonas sp. LBBMA 81.
View Article and Find Full Text PDFThe ability to differentiate functional and structural diversity of bacterial communities present in activated sludges adapted to elementally (ECF) and totally (TCF) chlorine-free bleaching effluents was evaluated. Community function was evaluated through substrate utilization patterns in BiologGN microplates, and taxonomic structure was evaluated by fluorescent in situ hybridization using probes targeting the Eubacteria; the alpha, beta, and gamma subclasses of the Proteobacteria; and gram-positive bacteria with high GC content. Over 6-week sampling periods, ECF-and TCF-adapted sludge bacterial communities presented reproducible substrate utilization patterns that through principal components (PCs) analysis, separated the ECF samples from the TCF samples.
View Article and Find Full Text PDF