Active enzymes during catalyzing chemical reactions, have been found to generate significant mechanical fluctuations, which can influence the dynamics of their surroundings. These phenomena open new avenues for controlling mass transport in complex and dynamically inhomogeneous environments through localized chemical reactions. To explore this potential, we studied the uptake of transferrin molecules in retinal pigment epithelium (RPE) cells via clathrin-mediated endocytosis.
View Article and Find Full Text PDFWe show that the forces generated by active enzyme molecules are strong enough to influence the dynamics of their surroundings under artificial crowded environments. We measured the behavior of polymer microparticles in a quasi-two-dimensional system under aqueous environment, at various area fraction values of particles. In the presence of enzymatic activity, not only was the diffusion of the suspended particles enhanced at shorter time-scales, but the system also showed a transition from subdiffusive to diffusive dynamics at longer time-scale limits.
View Article and Find Full Text PDFThe field of active matter is a nascent area of research in soft condensed matter physics, which is drawing on the expertise of researchers from diverse disciplines. Small scale active particles-both inorganic and biological-display non-trivial emergent dynamics and interactions that could help us understand complex biological processes and phenomena. Recently, using microfluidic technologies, several research groups have performed important experimental and theoretical studies to understand the behavior of self-propelled particles and molecular active matter within confined environments-to glean a fundamental understanding of the cellular processes occurring under ultra-low Reynolds number conditions.
View Article and Find Full Text PDFCigarette smoking is a risk factor for developing chronic obstructive pulmonary disease and protein aggresome formation is considered to be a hallmark event for the disease. Since dysfunction of lysosome-mediated protein degradation leads to enhanced accumulation of misfolded proteins and subsequent aggresome formation, we examined the effect of cigarette smoke extract (CSE) on ESCRT-mediated sorting in S. cerevisiae as this process is necessary for the functioning of the vacuole, the lysosomal equivalent in yeast.
View Article and Find Full Text PDFCigarette smoke (CS) is a major risk factor for emphysematous changes in the lungs and the underlying mechanism involves CS-induced cell death. In the present study we investigated the ability of nutrients to rescue CS-induced cell death. We observed that pre-treatment with excess leucine can partially rescue CS extract-induced cell death in and alveolar epithelial A549 cells.
View Article and Find Full Text PDF