The mouse is widely used as an experimental model to study visual processing. To probe how the visual system detects changes in the environment, functional paradigms in freely behaving mice are strongly needed. We developed and validated the first EEG-based method to investigate visual deviance detection in freely behaving mice.
View Article and Find Full Text PDFBackground: Migraine is associated with altered sensory processing and cortical responsivity that may contribute to susceptibility to attacks by changing brain network excitability dynamics. To gain better insight into cortical responsivity changes in migraine we subjected patients to a short series of light inputs over a broad frequency range ("chirp" stimulation), designed to uncover dynamic features of visual cortex responsivity.
Methods: EEG responses to visual chirp stimulation (10-40 Hz) were measured in controls (n = 24) and patients with migraine with aura (n = 19) or migraine without aura (n = 20).
To make optimal predictions in a dynamic environment, the impact of new observations on existing beliefs-that is, the learning rate-should be guided by ongoing estimates of change and uncertainty. Theoretical work has proposed specific computational roles for various neuromodulatory systems in the control of learning rate, but empirical evidence is still sparse. The aim of the current research was to examine the role of the noradrenergic and cholinergic systems in learning rate regulation.
View Article and Find Full Text PDFBackground: Migraine is a complex genetic disorder that is brought about by multiple genetic and environmental factors. We aimed to assess whether migraine frequency is associated with genetic susceptibility.
Methods: We investigated in 2829 migraine patients (14% males) whether 'migraine frequency' (measured as the number of migraine days per month) was related to 'genetic load' (measured as the number of parents affected with migraine) using a validated web-based questionnaire.
Several factors that modulate migraine, a common primary headache disorder, also affect susceptibility to cortical spreading depolarization (CSD). CSD is a wave of neuronal and glial depolarization and thought to underlie the migraine aura and possibly headache. Here, we tested whether caffeine, known to alleviate or trigger headache after acute exposure or chronic use/withdrawal, respectively, modulates CSD.
View Article and Find Full Text PDFFamilial hemiplegic migraine type 1 (FHM1) is a rare migraine subtype. Whereas transgenic knock-in mice with the human pathogenic FHM1 R192Q missense mutation in the Cacna1a gene reveal overall neuronal hyperexcitability, the effects on the trigeminovascular system and calcitonin gene-related peptide (CGRP) receptor are largely unknown. This gains relevance as blockade of CGRP and its receptor are therapeutic targets under development.
View Article and Find Full Text PDFIn central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by Ca2.1 calcium channels (Ca2.1) and is highly dependent on the physical distance between Ca2.
View Article and Find Full Text PDFMigraine is characterized by severe headaches that can be preceded by an aura likely caused by cortical spreading depression (SD). The antiepileptic pregabalin (Lyrica) shows clinical promise for migraine therapy, although its efficacy and mechanism of action are unclear. As detected by diffusion-weighted MRI (DW-MRI) in wild-type (WT) mice, the acute systemic administration of pregabalin increased the threshold for SD initiation in vivo.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) has become increasingly important in ischemic stroke experiments in mice, especially because it enables longitudinal studies. Still, quantitative analysis of MRI data remains challenging mainly because segmentation of mouse brain lesions in MRI data heavily relies on time-consuming manual tracing and thresholding techniques. Therefore, in the present study, a fully automated approach was developed to analyze longitudinal MRI data for quantification of ischemic lesion volume progression in the mouse brain.
View Article and Find Full Text PDFBackground The biological mechanisms of headache chronification are poorly understood. We aimed to identify changes in DNA methylation associated with the transformation from episodic to chronic headache. Methods Participants were recruited from the population-based Norwegian HUNT Study.
View Article and Find Full Text PDFCluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation.
View Article and Find Full Text PDFEndocannabinoids, a class of lipid messengers, have emerged as crucial regulators of synaptic communication in the CNS. Dysregulation of these compounds has been implicated in many brain disorders. Although some studies have identified and quantified a limited number of target compounds, a method that provides comprehensive quantitative information on endocannabinoids and related -acylethanolamines (NAEs) in cerebrospinal fluid (CSF) is currently lacking, as measurements are challenging due to low concentrations under normal physiological conditions.
View Article and Find Full Text PDFBackground: Migraine is a common episodic brain disorder. Treatment options and diagnosis are hampered by an incomplete understanding of disease pathophysiology and the lack of objective diagnostic markers. The aim of this study was to identify biochemical differences characteristic for different subtypes of migraine in cerebrospinal fluid (CSF) of migraine patients using an exploratory H-NMR-based metabolomics approach.
View Article and Find Full Text PDFPurinergic P2X3 receptors (P2X3Rs) play an important role in pain pathologies, including migraine. In trigeminal neurons, P2X3Rs are constitutively downregulated by endogenous brain natriuretic peptide (BNP). In a mouse knock-in (KI) model of familial hemiplegic migraine type-1 with upregulated calcium CaV2.
View Article and Find Full Text PDFSpreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes.
View Article and Find Full Text PDFObjective: Familial hemiplegic migraine type 1 (FHM1) is a subtype of migraine with aura caused by a gain-of-function mutation in the pore-forming α1 subunit of CaV 2.1 (P/Q-type) calcium channels. However, the mechanisms underlying how the disease is brought about and the prolonged aura remain incompletely understood.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) is a powerful molecular imaging technique. In microprobe MSI, images are created through a grid-wise interrogation of individual spots by mass spectrometry across a surface. Classical statistical tests for within-sample comparisons fail as close-by measurement spots violate the assumption of independence of these tests, which can lead to an increased false-discovery rate.
View Article and Find Full Text PDFBackground: On trigeminal ganglion neurons, pain-sensing P2X3 receptors are constitutively inhibited by brain natriuretic peptide via its natriuretic peptide receptor-A. This inhibition is associated with increased P2X3 serine phosphorylation and receptor redistribution to non-lipid raft membrane compartments. The natriuretic peptide receptor-A antagonist anantin reverses these effects.
View Article and Find Full Text PDFCortical spreading depression, which plays an important role in multiple neurological disorders, has been studied primarily with experimental models that use highly invasive methods. We developed a relatively non-invasive optogenetic model to induce cortical spreading depression by transcranial stimulation of channelrhodopsin-2 ion channels expressed in cortical layer 5 neurons. Light-evoked cortical spreading depression in anesthetized and freely behaving mice was studied with intracortical DC-potentials, multi-unit activity and/or non-invasive laser Doppler flowmetry, and optical intrinsic signal imaging.
View Article and Find Full Text PDF