Inhibition of coronavirus (CoV)-encoded papain-like cysteine proteases (PL ) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure-activity relationships (SAR) of the noncovalent active-site directed inhibitor (R)-5-amino-2-methyl-N-(1-(naphthalen-1-yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the SARS-CoV PL . Moreover, we report the discovery of isoindolines as a new class of potent PL inhibitors.
View Article and Find Full Text PDFThe inhibition potencies of covalent inhibitors mainly result from the formation of a covalent bond to the enzyme during the inhibition mechanism. This class of inhibitors has essentially been ignored in previous target-directed drug discovery projects because of concerns about possible side effects. However, their advantages, such as higher binding energies and longer drug-target residence times moved them into the focus of recent investigations.
View Article and Find Full Text PDFA series of 52 cis-configured 1-alkyl-3-phenylaziridine-2-carboxylates were synthesized as new pseudo-irreversible inhibitors of Candida albicans secreted aspartic acid protease 1 (SAP1), SAP2, SAP3, and SAP8. Some of the compounds, which were obtained as diastereomers with S,S- and R,R-configured aziridine rings by Cromwell synthesis of racemic (2R,3S+2S,3R)-dibromophenylpropionic acid ester with amines, followed by ester hydrolysis and coupling to hydrophobic amino acid esters, were separated by preparative HPLC. The absolute configuration of the aziridine ring was assigned by a combination of experimental circular dichroism (CD) investigations and quantum chemical CD calculations.
View Article and Find Full Text PDF