Annu Int Conf IEEE Eng Med Biol Soc
July 2020
We present an approach to quantifying nocturnal blood pressure (BP) variations that are elicited by sleep disordered breathing (SDB). A sample-by-sample aggregation of the dynamic BP variations during normal breathing and BP oscillations prompted by apnea episodes is performed. This approach facilitates visualization and analysis of BP oscillations.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Monitoring apnea-induced cerebral blood flow oscillations is of importance for assessing apnea patient brain health. Using an autoregressive moving average model, peak and trough values of cerebral blood flow were estimated from a concurrently recorded forehead photoplethysmography signal. Preliminary testing of the method in 7 subjects (4 F, 32±4 yrs.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Monitoring apnea-induced cerebral blood flow (CBF) oscillations is of importance for assessing apnea patient brain health. Blood pressure (BP) oscillations during apnea can induce oscillations in CBF. Preliminary results of testing an Auto Regressive Moving Average model relating nocturnal CBP oscillations to nocturnal BP variations in 8 obstructive sleep apnea subjects (3 F, 55±8 yrs.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
recent research has shown that each apnea episode results in a significant rise of the beat-to-beat blood pressure followed by a drop to the pre-episode levels when patient resumes normal breathing. While the physiological implications of these repetitive and significant oscillations are still unknown, it is of interest to quantify them. Since current array of instruments deployed for polysomnography studies does not include beat-to-beat measurement of blood pressure, but includes oximetry which can supply pulsatile photoplethysmography (PPG) signal, in addition to percent oxygen saturation.
View Article and Find Full Text PDFContinuous and noninvasive monitoring of blood pressure has numerous clinical and fitness applications. Current methods of continuous measurement of blood pressure are either invasive and/or require expensive equipment. Therefore, we investigated a new method for the continuous estimation of two main features of blood pressure waveform: systolic and diastolic pressures.
View Article and Find Full Text PDF