Publications by authors named "Armin Runz"

Purpose: Complicated type B Aortic dissection is a severe aortic pathology that requires treatment through thoracic endovascular aortic repair (TEVAR). During TEVAR a stentgraft is deployed in the aortic lumen in order to restore blood flow. Due to the complicated pathology including an entry, a resulting dissection wall with potentially several re-entries, replicating this structure artificially has proven to be challenging thus far.

View Article and Find Full Text PDF

Background: Particle mini-beam therapy exhibits promise in sparing healthy tissue through spatial fractionation, particularly notable for heavy ions, further enhancing the already favorable differential biological effectiveness at both target and entrance regions. However, breathing-induced organ motion affects particle mini-beam irradiation schemes since the organ displacements exceed the mini-beam structure dimensions, decreasing the advantages of spatial fractionation.

Purpose: In this study, the impact of breathing-induced organ motion on the dose distribution was examined at the target and organs at risk(OARs) during carbon ion mini-beam irradiation for pancreatic cancer.

View Article and Find Full Text PDF

Purpose: Our objective was to develop a methodology for assessing the linear energy transfer (LET) and relative biological effectiveness (RBE) in clinical proton and helium ion beams using fluorescent nuclear track detectors (FNTDs).

Methods And Materials: FNTDs were exposed behind solid water to proton and helium (He) ion spread-out Bragg peaks. Detectors were imaged with a confocal microscope, and the LET spectra were derived from the fluorescence intensity.

View Article and Find Full Text PDF

. Carbon ion radiotherapy is a promising radiation technique for malignancies like pancreatic cancer. However, organs' motion imposes challenges for achieving homogeneous dose delivery.

View Article and Find Full Text PDF

Background: Magnetic resonance-guided proton therapy is promising, as it combines high-contrast imaging of soft tissue with highly conformal dose delivery. However, proton dosimetry in magnetic fields using ionization chambers is challenging since the dose distribution as well as the detector response are perturbed.

Purpose: This work investigates the effect of the magnetic field on the ionization chamber response, and on the polarity and ion recombination correction factors, which are essential for the implementation of a proton beam dosimetry protocol in the presence of magnetic fields.

View Article and Find Full Text PDF
Article Synopsis
  • - Scientists usually use a test called a clonogenic survival assay to see how radiation affects cells, but it doesn’t account for differences between individual cells and how radiation hits them.
  • - Researchers created a new tool called "Cell-Fit-HD" that helps study how each cell reacts to radiation by looking at it closely with a microscope.
  • - This new method can help learn more about how radiation works on tiny levels, which might improve treatments and studies related to radiation in medicine.
View Article and Find Full Text PDF

. Improvements in image-guided radiotherapy (IGRT) enable accurate and precise treatment of moving tumors in the abdomen while simultaneously sparing healthy tissue. However, the lack of validation tools for newly developed MR-guided radiotherapy hybrid devices such as the MR-Linac is an open issue.

View Article and Find Full Text PDF

Purpose: Measurements comparing relative stopping power (RSP) accuracy of state-of-the-art systems representing single-energy and dual-energy computed tomography (SECT/DECT) with proton CT (pCT) and helium CT (HeCT) in biological tissue samples.

Methods: We used 16 porcine and bovine samples of various tissue types and water, covering an RSP range from 0.90 0.

View Article and Find Full Text PDF

MR-integrated radiotherapy requires suitable dosimetry detectors to be used in magnetic fields. This study investigates the feasibility of using dedicated MR-compatible ionization chambers at MR-integrated radiotherapy devices. MR-compatible ionization chambers (Exradin A19MR, A1SLMR, A26MR, A28MR) were precisely modeled and their relative response in a 6MV treatment beam in the presence of a magnetic field was simulated using EGSnrc.

View Article and Find Full Text PDF

Objective: To develop an anthropomorphic, deformable and multimodal pelvis phantom with positron emission tomography extension for radiotherapy (ADAM PETer).

Methods: The design of ADAM PETer was based on our previous pelvis phantom (ADAM) and extended for compatibility with PET and use in 3T magnetic resonance imaging (MRI). The formerly manually manufactured silicon organ surrogates were replaced by three-dimensional (3D) printed organ shells.

View Article and Find Full Text PDF

An experimental setup for consecutive measurement of ion and x-ray absorption in tissue or other materials is introduced. With this setup using a 3D-printed sample container, the reference stopping-power ratio (SPR) of materials can be measured with an uncertainty of below 0.1%.

View Article and Find Full Text PDF

Purpose: Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models.

Methods: Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow.

View Article and Find Full Text PDF

With the increasing complexity of external beam therapy "end-to-end" tests are intended to cover every step from therapy planning through to follow-up in order to fulfill the higher demands on quality assurance. As magnetic resonance imaging (MRI) has become an important part of the treatment process, established phantoms such as the Alderson head cannot fully be used for those tests and novel phantoms have to be developed. Here, we present a feasibility study of a customizable multimodality head phantom.

View Article and Find Full Text PDF

According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbhh2r3hla6ibp5t46lk2bt49v05sa0a3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once