Introduction: Protoporphyrin-IX (PpIX), a photosensitizer used in photodynamic therapy, has limitations due to its hydrophobicity, rapid photobleaching, and low absorption peak in the red region. These limitations make the use of PpIX less effective for photodynamic therapy treatments. In this study, we harnessed the power of microfluidic technology to manipulate the properties of PpIX and quickly synthesize albumin-based hybrid nanoshells with high reproducibility.
View Article and Find Full Text PDFObjectives: Conventional methods of cancer treatment include surgery, chemotherapy, radiation therapy, and immunotherapy. Chemotherapy, as one of the main methods of cancer treatment, due to the lack of targeted distribution of the drug in tumor tissues, is not able to destroy cancer cells and also affects healthy tissues and causes serious side effects in patients. Sonodynamic therapy (SDT) is a promising strategy for non-invasive treatment of deep solid cancer tumors.
View Article and Find Full Text PDFBackground: Conventional cancer treatments are associated with a number of limitations, including non-selectivity, toxicity and multidrug resistance, so new nanotechnologies are being developed forcancer diagnosis and therapy. Phototherapy approach based on nanotechnology is a hopeful strategy to overcome these problems. Photothermal (PTT) and photodynamic therapies (PDT), in addition to having non-invasive properties, are known as promising methods for treatment of tumors.
View Article and Find Full Text PDFObjectives: Photochemical internalization (PCI) is an important type of photodynamic therapy for delivering macromolecules into the cytosol by the endocytosis process. In this study, 6-mercapto-1-hexanol (MH) was used to functionalize the gold nanostructure as a primer for surface modification to improve conjugation of multi-agents such as protoporphyrin IX (Pp-IX) and folic acid with gold nanoparticles (PpIX/FA-MH-AuNP) to facilitate the photochemical internalization.
Materials And Methods: After surface modification of AuNPs with MH, PpIX and FA are bonded to the surface of the MH-AuNPs through the coupling reaction to produce the desired conjugated AuNPs.
Background: Hypoxia is one of the most important limiting factors in photodynamic therapy that can reduce the effectiveness of this treatment. By designing a nanocomplex of plasmonic nanoparticles and photosensitizers with similar optical properties, the rate of free oxygen radical production can be increased and the efficiency of photodynamic therapy can be improved. in this study, we tried to use the outstanding capacities of hollow gold nanoshells (HGNSs) as a plasmonic nanocarrier of methylene blue (MB) to improve the performance of photodynamic therapy.
View Article and Find Full Text PDFMicrofluidics provides enabling platforms for various cell culture, drug testing and synthesis of drug carriers using chip-based microsystems. In this study, we present a novel integrated whole-thermoplastic microfluidic chip to provide a platform for on-chip cell culture at static and dynamic conditions. The whole chip was made of polymethyl methacrylate (PMMA) and thermoplastic polyurethane (TPU) using high precision micromilling and laser micromachining, assembled by thermal fusion bonding.
View Article and Find Full Text PDFBackground: Photodynamic therapy (PDT) is one of the non-invasive methods for the treatment of superficial malignant cancers. One of the limiting challenges of PDT is the hypoxic conditions during treatment that reduces PDT Efficiency. Because of ROS and free radicals in plasma flame output, Cold atmospheric plasma (CAP) may improve treatment efficiency.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2018
Background: In recent years, Mitoxantrone (MTX) has been introduced as a chemotherapy drug which also serves as a photosensitizer and radiosensitizer. Due to its serious side effects, there are limitations to the application of MTX so scientists are looking for solutions to overcome this problem. Hollow gold nanoparticles (HAuNP) have attracted growing attention due to their unique physical-chemical properties, such as biocompatibility, tunable plasmonic absorption peak ranging from visible to near infrared, high stability and various medical applications in imaging, drug delivery and combinational cancer treatments.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2018
Background: In this study, iron oxide nanoparticles (SPIONs) were synthesized and coated by GA (SG) and then SG was encapsulated by ICG (SGI). After identifying specifications and cytotoxicity of the agents, the potential of SGI for photodynamic therapy (PDT) and photothermal therapy (PTT) was studied.
Methods: An SGI size of 12-13 nm was determined by TEM images and its zeta potential was measured at -23.