In polarized cells, the precise regulation of protein transport to and from the plasma membrane is crucial to maintain cellular function. Dysregulation of intracellular protein transport in neurons can lead to neurodegenerative diseases such as Retinitis Pigmentosa, Alzheimer's and Parkinson's disease. Here we used the light-dependent transport of the TRPL (transient receptor potential-like) ion channel in photoreceptor cells to study the role of Rab proteins in TRPL recycling.
View Article and Find Full Text PDFProteins exert their function through protein-protein interactions. In Drosophila, G protein-coupled receptors like rhodopsin (Rh1) interact with a G protein to activate visual signal transduction and with arrestins to terminate activation. Also, membrane proteins like Rh1 engage in protein-protein interactions during folding within the endoplasmic reticulum, during their vesicular transport and upon removal from the cell surface and degradation.
View Article and Find Full Text PDFGuided ultrasonic waves are used for the inspection of multilayered composite aerospace structures. Calculating the corresponding dispersion diagrams is challenging for thick-walled composites with more than 100 layers, such as in modern rocket booster pressure vessels. The Dispersion Calculator (DC) is an open source software for calculating such dispersion diagrams and mode shapes of guided waves.
View Article and Find Full Text PDFVertebrate and fly rhodopsins are prototypical GPCRs that have served for a long time as model systems for understanding GPCR signaling. Although all rhodopsins seem to become phosphorylated at their C-terminal region following activation by light, the role of this phosphorylation is not uniform. Two major functions of rhodopsin phosphorylation have been described: (1) inactivation of the activated rhodopsin either directly or by facilitating binding of arrestins in order to shut down the visual signaling cascade and thus eventually enabling a high-temporal resolution of the visual system.
View Article and Find Full Text PDFMembrane protein trafficking regulates the incorporation and removal of receptors and ion channels into the plasma membrane. This process is fundamentally important for cell function and cell integrity of neurons. Drosophila photoreceptor cells have become a model for studying membrane protein trafficking.
View Article and Find Full Text PDFPlasma membrane protein trafficking is of fundamental importance for cell function and cell integrity of neurons and includes regulated protein recycling. In this work, we report a novel role of the endoplasmic reticulum (ER) for protein recycling as discovered in trafficking studies of the ion channel TRPL in photoreceptor cells of Drosophila. TRPL is located within the rhabdomeric membrane from where it is endocytosed upon light stimulation and stored in the cell body.
View Article and Find Full Text PDFIn Drosophila photoreceptor cells, Ca exerts regulatory functions that control the shape, duration, and amplitude of the light response. Ca also orchestrates light adaptation allowing Drosophila to see in light intensity regimes that span several orders of magnitude ranging from single photons to bright sunlight. The prime source for Ca elevation in the cytosol is Ca influx from the extracellular space through light-activated TRP channels.
View Article and Find Full Text PDFDevelopment of eye tissue is initiated by a conserved set of transcription factors termed retinal determination network (RDN). In the fruit fly Drosophila melanogaster, the zinc-finger transcription factor Glass acts directly downstream of the RDN to control identity of photoreceptor as well as non-photoreceptor cells. Tight control of spatial and temporal gene expression is a critical feature during development, cell-fate determination as well as maintenance of differentiated tissues.
View Article and Find Full Text PDFphotoreceptor cells are employed as a model system for studying membrane protein transport. Phototransduction proteins like rhodopsin and the light-activated TRPL ion channel are transported within the photoreceptor cell, and they change their subcellular distribution in a light-dependent way. Investigating the transport mechanisms for rhodopsin and ion channels requires accurate histochemical methods for protein localization.
View Article and Find Full Text PDFObjectives: Left ventricular (LV) hypertrophy in resistant hypertensive patients is associated with a reduced intramyocardial perfusion. Renal sympathetic denervation (RDN) has been shown to reduce blood pressure (BP) and sympathetic tone. We aimed to prospectively investigate the effect of RDN on functional myocardial parameters and myocardial perfusion reserve (MPR) using cardiac magnetic resonance imaging (cMRI) in patients with resistant hypertension.
View Article and Find Full Text PDFGuided waves are used for the non-destructive evaluation in automotive and aerospace industries. There is a trend leaning away from isotropic materials to the manufacturing based on composites. However, the elastic wave dynamics in such materials is considerably more complicated.
View Article and Find Full Text PDFDrosophila retinal degeneration C (RDGC) is the founding member of the PPEF family of protein phosphatases. RDGC mediates dephosphorylation of the visual pigment rhodopsin and the TRP ion channel. From the rdgC locus, three protein isoforms, termed RDGC-S, -M, and -L, with different N-termini are generated.
View Article and Find Full Text PDFBackground: Blood flow through the cavities of the heart and great vessels is pulsatile and is subject to time and multidirectional variations. To date, the recording of blood flow in multiple directions and phases has been limited. 4D-flow MRI offers advantages for the recording, visualization and analysis of blood flow.
View Article and Find Full Text PDFProtein phosphorylation is an abundant molecular switch that regulates a multitude of cellular processes. In contrast to other subfamilies of phosphoprotein phosphatases, the PPEF subfamily is only poorly investigated. Drosophila retinal degeneration C (RDGC) constitutes the founding member of the PPEF subfamily.
View Article and Find Full Text PDFPurpose: To examine CTP of the brain in real patient data after reducing tube current down to 80 mAs to decrease radiation dose.
Methods: CTP was acquired in 60 suspected stroke patients with 80 (n: 30) or 160 (n: 30) mAs. Data were analyzed retrospectively by two independent readers.
Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while increasing the oscillating light intensity raises the maximally detected frequency. Recently, we reported that dephosphorylation of the light-activated TRP ion channel at S936 is a fast, graded, light-, and Ca-dependent process. We further found that this process affects the detection limit of high frequency oscillating light.
View Article and Find Full Text PDFphotoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC).
View Article and Find Full Text PDFTo prospectively compare image quality and myocardial T relaxation times of modified Look-Locker inversion recovery (MOLLI) imaging at 3.0 T (T) acquired with patient-adaptive dual-source (DS) and conventional single-source (SS) radiofrequency (RF) transmission. Pre- and post-contrast MOLLI T mapping using SS and DS was acquired in 27 patients.
View Article and Find Full Text PDFThe intrinsically photosensitive M1 retinal ganglion cells (ipRGC) initiate non-image-forming light-dependent activities and express the melanopsin (OPN4) photopigment. Several features of ipRGC photosensitivity are characteristic of fly photoreceptors. However, the light response kinetics of ipRGC is much slower due to unknown reasons.
View Article and Find Full Text PDFMembrane protein trafficking occurs throughout the lifetime of neurons and includes the initial protein synthesis and anterograde transport to the plasma membrane as well as internalization, degradation, and recycling of plasma membrane proteins. Defects in protein trafficking can result in neuronal degeneration and underlie blinding diseases such as retinitis pigmentosa as well as other neuronal disorders. Drosophila photoreceptor cells have emerged as a model system for identifying the components and mechanisms involved in membrane protein trafficking in neurons.
View Article and Find Full Text PDFEur Radiol
September 2016
Objective: To compare prospectively image quality and diagnostic confidence of flow-sensitive 3D turbo spin echo (TSE)-based non-contrast-enhanced MR angiography (NE-MRA) at 3.0 T using dual-source radiofrequency (RF) transmission with contrast-enhanced MRA (CE-MRA) in patients with peripheral arterial occlusive disease (PAOD).
Methods: After consent was obtained, 35 patients (mean age 69.