Publications by authors named "Armin Djamei"

The intracellular colonization of plant roots by the beneficial fungal endophyte Serendipita indica follows a biphasic strategy, including a host cell death phase that enables successful colonization of Arabidopsis thaliana roots. How host cell death is initiated and controlled is largely unknown. Here, we show that two fungal enzymes, the ecto-5'-nucleotidase SiE5NT and the nuclease SiNucA, act synergistically in the apoplast at the onset of cell death to produce deoxyadenosine (dAdo).

View Article and Find Full Text PDF

Ustilago maydis is a biotrophic pathogen causing smut disease in maize. It secretes a cocktail of effector proteins, which target different host proteins during its biotrophic stages in the host plant. One such class of proteins we identified previously is TOPLESS (TPL) and TOPLESS-RELATED (TPR) transcriptional corepressors.

View Article and Find Full Text PDF

Transcriptional corepressors form an ancient and essential layer of gene expression control in eukaryotes. TOPLESS and TOPLESS-RELATED (TPL/TPR) proteins constitute a conserved family of Groucho (Gro)/thymidine uptake 1 (Tup1)-type transcriptional corepressors and control diverse growth, developmental, and stress signaling responses in plants. Because of their central and versatile regulatory roles, they act as a signaling hub to integrate various input signaling pathways in the transcriptional responses.

View Article and Find Full Text PDF

A common feature of many plant-colonizing organisms is the exploitation of plant signaling and developmental pathways to successfully establish and proliferate in their hosts. Auxins are central plant growth hormones, and their signaling is heavily interlinked with plant development and immunity responses. Smuts, as one of the largest groups in basidiomycetes, are biotrophic specialists that successfully manipulate their host plants and cause fascinating phenotypes in so far largely enigmatic ways.

View Article and Find Full Text PDF

Ustilago maydis is a biotrophic fungus that causes tumor formation on all aerial parts of maize. U. maydis secretes effector proteins during penetration and colonization to successfully overcome the plant immune response and reprogram host physiology to promote infection.

View Article and Find Full Text PDF

is a biotrophic phytopathogenic fungus that causes corn smut disease. As a well-established model system, is genetically fully accessible with large omics datasets available and subject to various biological questions ranging from DNA-repair, RNA-transport, and protein secretion to disease biology. For many genetic approaches, tight control of transgene regulation is important.

View Article and Find Full Text PDF

Protein-protein interactions play an essential role in host-pathogen interactions. Phytopathogens secrete a cocktail of effector proteins to suppress plant immunity and reprogram host cell metabolism in their favor. Identification and characterization of effectors and their target protein complexes by co-immunoprecipitation can help to gain a deeper understanding of the functions of individual effectors during pathogenicity and can also provide new insights into the wiring of plant signaling pathways or metabolic complexes.

View Article and Find Full Text PDF
Ustilago maydis.

Curr Biol

June 2023

Djamei introduces the fungal pathogen (and culinary delicacy) Ustilago maydis.

View Article and Find Full Text PDF

Plant biotrophic pathogens employ secreted molecules, called effectors, to suppress the host immune system and redirect the host's metabolism and development in their favour. Putative effectors of the gall-inducing maize pathogenic fungus Ustilago maydis were analysed for their ability to induce auxin signalling in plants. Using genetic, biochemical, cell-biological, and bioinformatic approaches we functionally elucidate a set of five, genetically linked effectors, called Topless (TPL) interacting protein (Tips) effectors that induce auxin signalling.

View Article and Find Full Text PDF

In plants, the antagonism between growth and defense is hardwired by hormonal signaling. The perception of pathogen-associated molecular patterns (PAMPs) from invading microorganisms inhibits auxin signaling and plant growth. Conversely, pathogens manipulate auxin signaling to promote disease, but how this hormone inhibits immunity is not fully understood.

View Article and Find Full Text PDF

As the gall-inducing smut fungus Ustilago maydis colonizes maize (Zea mays) plants, it secretes a complex effector blend that suppresses host defense responses, including production of reactive oxygen species (ROS) and redirects host metabolism to facilitate colonization. We show that the U. maydis effector ROS burst interfering protein 1 (Rip1), which is involved in pathogen-associated molecular pattern (PAMP)-triggered suppression of host immunity, is functionally conserved in several other monocot-infecting smut fungi.

View Article and Find Full Text PDF

Corn head smut fungus Sporisorium reilianum f. sp. zeae is a biotrophic pathogen belonging to the class of basidiomycetes.

View Article and Find Full Text PDF

Biotrophic plant pathogens secrete effector proteins to manipulate the host physiology. Effectors suppress defenses and induce an environment favorable to disease development. Sequence-based prediction of effector function is impeded by their rapid evolution rate.

View Article and Find Full Text PDF

Ustilago maydis is the causal agent of maize smut disease. During the colonization process, the fungus secretes effector proteins that suppress immune responses and redirect the host metabolism in favor of the pathogen. As effectors play a critical role during plant colonization, their identification and functional characterization are essential to understanding biotrophy and disease.

View Article and Find Full Text PDF

Biotic stresses caused by microbial pathogens impair crop yield and quality if not restricted by expensive and often ecologically problematic pesticides. For a sustainable agriculture of tomorrow, breeding or engineering of pathogen-resistant crop varieties is therefore a major cornerstone. Maize is one of the four most important cereal crops in the world.

View Article and Find Full Text PDF

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive.

View Article and Find Full Text PDF

Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B.

View Article and Find Full Text PDF

Background: The unfolded protein response (UPR) is a highly conserved process in eukaryotic organisms that plays a crucial role in adaptation and development. While the most ubiquitous components of this pathway have been characterized, current efforts are focused on identifying and characterizing other UPR factors that play a role in specific conditions, such as developmental changes, abiotic cues, and biotic interactions. Considering the central role of protein secretion in plant pathogen interactions, there has also been a recent focus on understanding how pathogens manipulate their host's UPR to facilitate infection.

View Article and Find Full Text PDF

Chloroplasts play a central role in plant immunity through the synthesis of secondary metabolites and defense compounds, as well as phytohormones, such as jasmonic acid and salicylic acid. Additionally, chloroplast metabolism results in the production of reactive oxygen species and nitric oxide as defense molecules. The impact of viral and bacterial infections on plastids and chloroplasts has been well documented.

View Article and Find Full Text PDF

During infection pathogens secrete small molecules, termed effectors, to manipulate and control the interaction with their specific hosts. Both the pathogen and the plant are under high selective pressure to rapidly adapt and co-evolve in what is usually referred to as molecular arms race. Components of the host's immune system form a network that processes information about molecules with a foreign origin and damage-associated signals, integrating them with developmental and abiotic cues to adapt the plant's responses.

View Article and Find Full Text PDF

Pathogenic fungi can have devastating effects on agriculture and health. One potential challenge in dealing with pathogens is the possibility of a host jump (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified markers in the Dicer1 and Ara6 genes linked to Fusarium head blight (FHB) resistance in a specific wheat population (GABI).
  • Utilizing candidate-gene association mapping, they tested 14 markers across 356 wheat lines, finding significant associations with FHB resistance and plant height.
  • Validation with a biparental population confirmed the associations, suggesting potential for these markers in future wheat breeding efforts.
View Article and Find Full Text PDF

Insertional mutant libraries of microorganisms can be applied in negative depletion screens to decipher gene functions. Because of underrepresentation in colonized tissue, one major bottleneck is analysis of species that colonize hosts. To overcome this, we developed insertion pool sequencing (iPool-Seq).

View Article and Find Full Text PDF

Fungi-induced plant diseases affect global food security and plant ecology. The biotrophic fungus Ustilago maydis causes smut disease in maize (Zea mays) plants by secreting numerous virulence effectors that reprogram plant metabolism and immune responses. The secreted fungal chorismate mutase Cmu1 presumably affects biosynthesis of the plant immune signal salicylic acid by channelling chorismate into the phenylpropanoid pathway.

View Article and Find Full Text PDF