We investigate the first-order liquid-liquid phase transition in fluid hydrogen, which is accompanied by a nonmetal-to-metal transition. We use a combination of density functional theory for the electrons and molecular dynamics simulations for the ions. By employing the nonlocal Heyd-Scuseria-Ernzerhof exchange-correlation functional, we accurately determine the equation of state and the corresponding coexistence line.
View Article and Find Full Text PDFLaser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states.
View Article and Find Full Text PDFWe employ first-principles molecular dynamics simulations to provide equation-of-state data, pair distribution functions (PDFs), diffusion coefficients, and band gaps of a mixture of hydrogen and methane under planetary interior conditions as relevant for Uranus, Neptune, and similar icy exoplanets. We test the linear mixing approximation, which is fulfilled within a few percent for the chosen - conditions. Evaluation of the PDFs reveals that methane molecules dissociate into carbon clusters and free hydrogen atoms at temperatures greater than 3000 K.
View Article and Find Full Text PDFExtreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and HO systems, respectively.
View Article and Find Full Text PDFThe miscibility gap in hydrogen-water mixtures is investigated by conducting Gibbs-ensemble Monte Carlo simulations with analytical two-body interaction potentials between the molecular species. We calculate several demixing curves at pressures below 150 kbar and temperatures of 1000 K ≤T≤ 2000 K. Despite the approximations introduced by the two-body interaction potentials, our results predict a large miscibility gap in hydrogen-water mixtures at similar conditions as found in experiments.
View Article and Find Full Text PDFWe explore the performance of the Gibbs-ensemble Monte Carlo simulation technique by calculating the miscibility gap of H_{2}-He mixtures with analytical exponential-six potentials. We calculate several demixing curves for pressures up to 500 kbar and for temperatures up to 1800K and predict a H_{2}-He miscibility diagram for the solar He abundance for temperatures up to 1500K and determine the demixing region. Our results are in good agreement with ab initio simulations in the nondissociated region of the phase diagram.
View Article and Find Full Text PDF