Publications by authors named "Armin Amirsadeghi"

Melt electrowriting (MEW) is a powerful additive manufacturing technique to produce tissue engineering scaffolds. Despite its strength, it is limited by a small number of processable polymers. Therefore, to broaden the library of materials for MEW, we investigated the printability of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT-PBT), a thermoplastic elastomer.

View Article and Find Full Text PDF

Melt electrowriting (MEW) enables precise scaffold fabrication for biomedical applications. With a limited number of processable materials with short and tunable degradation times, polyhydroxyalkanoates (PHAs) present an interesting option. Here, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a blend of PHBV and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (PHBV+P34HB) are successfully melt electrowritten into scaffolds with various architectures.

View Article and Find Full Text PDF

In the present study, the allantoin and silver nanoparticle (Ag NPs) loaded poly caprolactone/gelatin (PCL/GEL) nanofibers produced using electrospinning technique and their cyto-compatibility and wound healing activity were evaluated in vitro and in vivo. The SEM imaging revealed diameters of 278.8 ± 10 and 240.

View Article and Find Full Text PDF

Complex coacervates make up a class of versatile materials formed as a result of the electrostatic associations between oppositely charged polyelectrolytes. It is well-known that the viscoelastic properties of these materials can be easily altered with the ionic strength of the medium, resulting in a range of materials from free-flowing liquids to gel-like solids. However, in addition to electrostatics, several other noncovalent interactions could influence the formation of the coacervate phase depending on the chemical nature of the polymers involved.

View Article and Find Full Text PDF

3D bioprinting is a powerful fabrication technique in biomedical engineering, which is currently limited by the number of available materials that meet all physicochemical and cytocompatibility requirements for biomaterial inks. Inspired by the key role of coacervation in the extrusion and spinning of many natural materials, hyaluronic acid-chitosan complex coacervates are proposed here as tunable biomaterial inks. Complex coacervates are obtained through an associative liquid-liquid phase separation driven by electrostatic attraction between oppositely charged macromolecules.

View Article and Find Full Text PDF

Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources.

View Article and Find Full Text PDF

Most components in avian eggs, offering a natural and environmentally friendly source of raw materials, hold great potential in tissue engineering. An avian egg consists of several beneficial elements: the protective eggshell, the eggshell membrane, the egg white (albumen), and the egg yolk (vitellus). The eggshell is mostly composed of calcium carbonate and has intrinsic biological properties that stimulate bone repair.

View Article and Find Full Text PDF

Electrospinning of natural and synthetic polymers has shown to be a great candidate for the fabrication of tissue engineering scaffolds due to their similarity to the nanofibrous structure of natural extracellular matrix (ECM). Moreover, the addition of ECM-like proteins could enhance the biocompatibility of these scaffolds. In this study, soluble eggshell protein (SEP) was first extracted and synthesized from the raw eggshell membrane.

View Article and Find Full Text PDF

A number of challenges in skin grafting for wound healing have drawn researchers to focus on skin tissue engineering as an alternative solution. The core idea of tissue engineering is to use scaffolds, cells, and/or bioactive molecules to help the skin to properly recover from injuries. Over the past decades, the field has significantly evolved, developing various strategies to accelerate and improve skin regeneration.

View Article and Find Full Text PDF

Treatment of diabetic, chronic, and full-thickness wounds is a challenge as these injuries usually lead to infections that cause delayed and inappropriate healing. Therefore, fabrication of skin scaffolds with prolonged antibacterial properties are of great interest. Due to this demand, bilayered nanofibrous scaffolds were fabricated based on polycaprolactone and gelatin.

View Article and Find Full Text PDF