Publications by authors named "Armelle Riboulleau"

Silicified peritidal carbonates of the Tonian Draken Formation, Spitsbergen, contain highly diverse and well-preserved microfossil assemblages dominated by filamentous microbial mats, but also including diverse benthic and/or allochthonous (possibly planktonic) microorganisms. Here, we characterize eight morphospecies in focused ion beam (FIB) ultrathin sections using transmission electron microscopy (TEM) and X-ray absorption near-edge structure (XANES) spectromicroscopy. Raman and XANES spectroscopies show the highly aromatic molecular structure of preserved organic matter.

View Article and Find Full Text PDF

Laser desorption-ionization mass spectrometry (MS) shows great potential for molecular analysis of planetary surfaces and microanalysis of space-returned samples or (micro)fossils. Coupled with pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) in ESA's ExoMars project, this technique could help assess further the origin of sulfur-bearing organic matter (OM) recently detected on Mars. To unravel this potential, we analyzed sulfurized microbial OM from ca.

View Article and Find Full Text PDF

Organic microfossils preserved in three dimensions in transparent mineral matrices such as cherts/quartzites, phosphates, or carbonates are best studied in petrographic thin sections. Moreover, microscale mass spectrometry techniques commonly require flat, polished surfaces to minimize analytical bias. However, contamination by epoxy resin in traditional petrographic sections is problematic for the geochemical study of the kerogen in these microfossils and more generally for the in situ analysis of fossil organic matter.

View Article and Find Full Text PDF

Illitisation requires potassium incorporation into a smectite precursor, a process akin to reverse weathering. However, it remains unclear whether microbes facilitate K uptake to the sediments and whether illitisation was important in the geological past. The 2.

View Article and Find Full Text PDF

Evidence for macroscopic life in the Paleoproterozoic Era comes from 1.8 billion-year-old (Ga) compression fossils [Han TM, Runnegar B (1992) 257:232-235; Knoll et al. (2006) 361:1023-1038], Stirling biota [Bengtson S et al.

View Article and Find Full Text PDF

The 2.1-billion-year-old (Ga) Francevillian series in Gabon hosts some of the oldest reported macroscopic fossils of various sizes and shapes, stimulating new debates on the origin, evolution and organization of early complex life. Here, we document ten representative types of exceptionally well-preserved mat-related structures, comprising "elephant-skin" textures, putative macro-tufted microbial mats, domal buildups, flat pyritized structures, discoidal microbial colonies, horizontal mat growth patterns, wrinkle structures, "kinneyia" structures, linear patterns and nodule-like structures.

View Article and Find Full Text PDF

The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation.

View Article and Find Full Text PDF

The oxygen content of Earth's atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth's oxygenation as a series of steps followed by periods of relative stasis.

View Article and Find Full Text PDF