R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS).
View Article and Find Full Text PDFReplication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops.
View Article and Find Full Text PDFCellular homeostasis requires the coordination of several machineries concurrently engaged in the DNA. Wide-spread transcription can interfere with other processes, and transcription-replication conflicts (TRCs) threaten genome stability. The conserved Sen1 helicase not only terminates non-coding transcription but also interacts with the replisome and reportedly resolves genotoxic R-loops.
View Article and Find Full Text PDFTranscription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication.
View Article and Find Full Text PDFThis protocol describes how to culture, image, and determine the nuclear position of a fluorescently tagged DNA locus in the 3D nucleoplasm of fixed cells. Here, we propose a manual scoring method based on widefield images and an automated method based on 3D-SIM images. Yeast culture conditions have to be followed meticulously to get the best biological response in a given environment.
View Article and Find Full Text PDFMre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator.
View Article and Find Full Text PDFThe Mec1 and Rad53 kinases play a central role during acute replication stress in budding yeast. They are also essential for viability in normal growth conditions, but the signal that activates the Mec1-Rad53 pathway in the absence of exogenous insults is currently unknown. Here, we show that this pathway is active at the onset of normal S phase because deoxyribonucleotide triphosphate (dNTP) levels present in G phase may not be sufficient to support processive DNA synthesis and impede DNA replication.
View Article and Find Full Text PDFThe recovery of stalled replication forks depends on the controlled resection of nascent DNA and on the loading of cohesin. These processes operate in the context of nascent chromatin, but the impact of nucleosome structure on a fork restart remains poorly understood. Here, we show that the Mre11-Rad50-Xrs2 (MRX) complex acts together with the chromatin modifiers Gcn5 and Set1 and the histone remodelers RSC, Chd1, and Isw1 to promote chromatin remodeling at stalled forks.
View Article and Find Full Text PDFThe S-phase checkpoint maintains the integrity of the genome in response to DNA replication stress. In budding yeast, this pathway is initiated by Mec1 and is amplified through the activation of Rad53 by two checkpoint mediators: Mrc1 promotes Rad53 activation at stalled forks, and Rad9 is a general mediator of the DNA damage response. Here, we have investigated the interplay between Mrc1 and Rad9 in response to DNA damage and found that they control DNA replication through two distinct but complementary mechanisms.
View Article and Find Full Text PDFInitiation of eukaryotic chromosome replication follows a spatiotemporal program. The current model suggests that replication origins compete for a limited pool of initiation factors. However, it remains to be answered how these limiting factors are preferentially recruited to early origins.
View Article and Find Full Text PDFThe DNA combing method allows the analysis of DNA replication at the level of individual DNA molecules stretched along silane-coated glass coverslips. Before DNA extraction, ongoing DNA synthesis is labeled with halogenated analogues of thymidine. Replication tracks are visualized by immunofluorescence using specific antibodies.
View Article and Find Full Text PDFDNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif that Chl1 shares with GINS and polymerase α.
View Article and Find Full Text PDFThe essential functions of the conserved Smc5/6 complex remain elusive. To uncover its roles in genome maintenance, we established Saccharomyces cerevisiae cell-cycle-regulated alleles that enable restriction of Smc5/6 components to S or G2/M. Unexpectedly, the essential functions of Smc5/6 segregated fully and selectively to G2/M.
View Article and Find Full Text PDFThe initiation of eukaryotic DNA replication is a highly regulated process conserved from yeast to human. The past decade has seen significant advances in understanding how the CMG (Cdc45‐MCM‐GINS) replicative helicase is loaded onto DNA. However, very little was known on how this complex is removed from chromatin at the end of S phase.
View Article and Find Full Text PDFIn eukaryotes, duplication of genomic information depends on the sequential activation of multiple replication origins distributed along the chromosomes. Replication origins differ in initiation time, chromatin structure and three-dimensional position in the nucleus. Recently, we have performed a systematic analysis of the role of histone deacetylases (HDACs) in the regulation of origin activity in budding yeast.
View Article and Find Full Text PDFIn S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood.
View Article and Find Full Text PDFEukaryotic DNA synthesis initiates from multiple replication origins and progresses through bidirectional replication forks to ensure efficient duplication of the genome. Temporal control of initiation from origins and regulation of replication fork functions are important aspects for maintaining genome stability. Multiple kinase-signaling pathways are involved in these processes.
View Article and Find Full Text PDFThe establishment of stable sister chromatid cohesion during DNA replication requires acetylation of the chromosomal cohesin complex by the replication fork-associated acetyltransferase Eco1. Cohesin acetylation is thought to facilitate replication fork progression by counteracting an as yet ill-defined cohesion "antiestablishment" activity imposed by the Wapl protein. Here, using budding yeast, we find no evidence that cohesin acetylation must overcome Wapl during replication fork progression.
View Article and Find Full Text PDFThe cohesin complex holds together newly replicated chromatids and is involved in diverse pathways that preserve genome integrity. We show that in budding yeast, cohesin is transiently recruited to active replication origins, and it spreads along DNA as forks progress. When DNA synthesis is impeded, cohesin accumulates at replication sites and is critical for the recovery of stalled forks.
View Article and Find Full Text PDFDNA combing is a powerful method developed by Bensimon and colleagues to stretch DNA molecules on silanized glass coverslips. This technique provides a unique way to monitor the activation of replication origins and the progression of replication forks at the level of single DNA molecules, after incorporation of thymidine analogs, such as 5-bromo-2'-deoxyuridine (BrdU), 5-iodo-2'-deoxyuridine (IdU) and 5-chloro-2'-deoxyuridine (CldU) in newly-synthesized DNA. Unlike microarray-based approaches, this assay gives access to the variability of replication profiles in individual cells.
View Article and Find Full Text PDFIntracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood.
View Article and Find Full Text PDFMaintenance of genome integrity relies on surveillance mechanisms that detect and signal arrested replication forks. Although evidence from budding yeast indicates that the DNA replication checkpoint (DRC) is primarily activated by single-stranded DNA (ssDNA), studies in higher eukaryotes have implicated primer ends in this process. To identify factors that signal primed ssDNA in Saccharomyces cerevisiae, we have screened a collection of checkpoint mutants for their ability to activate the DRC, using the repression of late origins as readout for checkpoint activity.
View Article and Find Full Text PDFTwo identical sister copies of eukaryotic chromosomes are synthesized during S phase. To facilitate their recognition as pairs for segregation in mitosis, sister chromatids are held together from their synthesis onward by the chromosomal cohesin complex. Replication fork progression is thought to be coupled to establishment of sister chromatid cohesion, facilitating identification of replication products, but evidence for this has remained circumstantial.
View Article and Find Full Text PDFSister chromatids, the products of eukaryotic DNA replication, are held together by the chromosomal cohesin complex after their synthesis. This allows the spindle in mitosis to recognize pairs of replication products for segregation into opposite directions. Cohesin forms large protein rings that may bind DNA strands by encircling them, but the characterization of cohesin binding to chromosomes in vivo has remained vague.
View Article and Find Full Text PDF