Publications by authors named "Armelle Braud"

The development of more sustainable remediation techniques has been receiving greater attention, as an alternative to soil excavation plan in urban gardens. An phytoextraction experiment with buckwheat ( was performed with a 5mmol kg citric acid (CA) application. Joint experiments under laboratory conditions were conducted using various cultivars of in two soils with a Pb contamination of either geogenic or anthropogenic origin and various chelate concentrations.

View Article and Find Full Text PDF

Urban garden soils are a potential repository of heavy metal pollution, resulting from either anthropogenic or geogenic origin. The efficiency of phytoextraction was compared on two garden soils with the same texture and topsoil Pb concentration (170 mg kg) but not the same origin: one geogenic, the other anthropogenic. Two varieties of Brassica juncea were tested with citric acid (25 mmol kg) or ethylenediaminetetraacetic acid (EDTA, 2.

View Article and Find Full Text PDF

Pyoverdine (PVD) is the major siderophore produced by Pseudomonas aeruginosa for iron acquisition. PvdRT-OpmQ is an ATP-dependent efflux pump involved in the secretion of newly synthesized pyoverdine (PVD) and of PVD that has transported and released its iron into the bacterium from the periplasm into the extracellular medium. This iron uptake pathway also involves an outer membrane transporter, FpvA, for PVD-Fe uptake from the extracellular medium into the periplasm.

View Article and Find Full Text PDF

Siderophores are chelators with extremely strong affinity for ferric iron and are best known for their capacity to feed microorganisms with this metal. Despite their preference for iron, they can also chelate numerous other metals with variable affinities. There is also increasing evidence that metals other than iron can activate the production of siderophores by bacteria, thereby implicating siderophores in the homeostasis of metals other than iron and especially heavy metal tolerance.

View Article and Find Full Text PDF

In order to get access to iron, Pseudomonas aeruginosa strain PAO1 produces two major siderophores pyoverdine (PVD) and pyochelin (PCH). Both siderophores are able to chelate many other metals in addition to iron. However, despite this property, only iron is transported efficiently into the bacteria by the PVD and PCH uptake pathways.

View Article and Find Full Text PDF

Pyochelin (Pch) is one of the two major siderophores produced and secreted by Pseudomonas aeruginosa PAO1 to assimilate iron. It chelates iron in the extracellular medium and transports it into the cell via a specific outer membrane transporter, FptA. We used the fluorescent properties of Pch to show that this siderophore chelates, in addition to Fe(3+) albeit with substantially lower affinities, Ag(+), Al(3+), Cd(2+), Co(2+), Cr(2+), Cu(2+), Eu(3+), Ga(3+), Hg(2+), Mn(2+), Ni(2+), Pb(2+), Sn(2+), Tb(3+), Tl(+), and Zn(2+).

View Article and Find Full Text PDF

Pyoverdine (PvdI) is the major siderophore secreted by Pseudomonas aeruginosa PAOI in order to get access to iron. After being loaded with iron in the extracellular medium, PvdI is transported across the bacterial outer membrane by the transporter, FpvAI. We used the spectral properties of PvdI to show that in addition to Fe(3+), this siderophore also chelates, but with lower efficiencies, all the 16 metals used in our screening.

View Article and Find Full Text PDF

Bioaugmentation-assisted phytoextraction may enhance the phytoextraction efficiency thanks to larger metal mobilization by microbial metabolites. Green fluorescent protein-tagged cells of Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans, able to produce siderophores, were inoculated in an agricultural soil containing Cr (488 mg kg(-1)) and Pb (382 mg kg(-1)) and maize was cultivated. Bacteria were inoculated as free or immobilized cells in Ca-alginate beads, with skim milk in the aim at improving both the bacterial survival and the in situ siderophore production.

View Article and Find Full Text PDF

Bioaugmentation-assisted phytoextraction is a promising method for the cleaning-up of soils contaminated by metals. Bacteria mainly Plant Growth Promoting Rhizobacteria (PGPR) and fungi mainly Arbuscular Mycorrhizal Fungi (AMF) associated with hyperaccumulating or non-hyperaccumulating plants were analyzed on the basis of a bioprocess engineering approach (concentration and amount of metals extracted by plants, translocation and bioconcentration factor, and plant biomass). In average bioaugmentation increased metals accumulated by shoots by a factor of about 2 (metal concentration) and 5 (amount) without any obvious differences between bacteria and fungi.

View Article and Find Full Text PDF

To increase the amount of bioavailable metals in phytoextraction purposes, soil bioaugmentation with Pseudomonads, as siderophore producers with high metal complexation levels, could be relevant. Unfortunately, siderophore synthesis may be inhibited by soluble iron in soil and bacteria can suffer at the same time from the toxicity of some other metals, predation and oligotrophy. To overcome these drawbacks, we attempted to co-locate a carbon substrate and Pseudomonas aeruginosa or P.

View Article and Find Full Text PDF

Pseudomonads are serious candidates for siderophore production applied to toxic metal (TM) solubilization. The bioaugmentation of contaminated soils by these TM-solubilizing bacteria combined with phytoextraction is an emerging clean-up technology. Unfortunately, siderophore synthesis may be drastically reduced by soluble iron in soils and bacteria can suffer from TM toxicity.

View Article and Find Full Text PDF