Publications by authors named "Armelle Bigot"

Listeria monocytogenes is a foodborne pathogen able to infect humans and many other mammalian species, leading to serious, often fatal disease. We have previously identified a five-gene locus in the genome of L. monocytogenes EGD-e which comprised three contiguous genes encoding paralogous type I signal peptidases.

View Article and Find Full Text PDF

Molecular chaperones play an essential role in the folding of nascent chain polypeptides, as well as in the refolding and degradation of misfolded or aggregated proteins. They also assist in protein translocation and participate in stress functions. We identified a gene, designated tig, encoding a protein homologous to trigger factor (TF), a cytosolic ribosome-associated chaperone, in the genome of Listeria monocytogenes.

View Article and Find Full Text PDF

Listeria monocytogenes is a facultative intracellular gram-positive bacterium responsible for severe opportunistic infections in humans and animals. We had previously identified a gene encoding a putative UDP-N-acetylglucosamine 2-epimerase, a precursor of the teichoic acid linkage unit, in the genome of L monocytogenes strain EGD-e. This gene, now designated lmo2537, encodes a protein that shares 62% identity with the cognate epimerase MnaA of Bacillus subtilis and 55% identity with Cap5P of Staphylococcus aureus.

View Article and Find Full Text PDF

Flagellar structures have been shown to participate in virulence in a variety of intestinal pathogens. Here, we have identified two potential flagellar genes of Listeria monocytogenes: lmo0713, encoding a protein similar to the flagellar basal body component FliF, and lmo0716, encoding a protein similar to FliI, the cognate ATPase energizing the flagellar export apparatus. Expression of fliF and fliI appears to be downregulated at 37 degrees C, like that of flaA, encoding flagellin.

View Article and Find Full Text PDF