Publications by authors named "Armelin E"

The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials.

View Article and Find Full Text PDF

This study investigates the potential of thermoresponsive hydrogels as innovative substrates for future in vitro diagnostic (IVD) applications using AVAC technology, developed and patented by the Mecwins biomedical company. In order to convert the hydrogel in a substrate compatible with AVAC technology, the following prerequisites were established: (1) the hydrogel layer needs to be permeable to gold nanoparticles (AuNPs), and (2) the optical properties of the hydrogel should not interfere with the detection of AuNPs with AVAC technology. These two key aspects are evaluated in this work.

View Article and Find Full Text PDF

Cholesterol is a fundamental lipid prevalent in eukaryotic cell membranes and circulating in the bloodstream bound to lipoproteins. It serves as a precursor to steroid hormones and is regarded as a biomarker for cardiovascular disease and other metabolic disorders. Numerous cholesterol detection methods predominantly rely on enzymes, which suffer from instability, leading to non-cost-effective biosensors with low sensitivity and poor reusability.

View Article and Find Full Text PDF

The utilization of biomimetic membranes supported by advanced self-assembled monolayers is gaining attraction as a promising sensing tool. Biomimetic membranes offer exceptional biocompatibility and adsorption capacity upon degradation, transcending their role as mere research instruments to open new avenues in biosensing. This study focused on anchoring a sparsely tethered bilayer lipid membrane onto a self-assembled monolayer composed of a biodegradable polymer, functionalized with poly(ethylene glycol)-cholesterol moieties, for lipid membrane integration.

View Article and Find Full Text PDF

Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted.

View Article and Find Full Text PDF

Smart polypropylene (PP) hernia meshes were proposed to detect surgical infections and to regulate cell attachment-modulated properties. For this purpose, lightweight and midweight meshes were modified by applying a plasma treatment for subsequent grafting of a thermosensitive hydrogel, poly(-isopropylacrylamide) (PNIPAAm). However, both the physical treatment with plasma and the chemical processes required for the covalent incorporation of PNIPAAm can modify the mechanical properties of the mesh and thus have an influence in hernia repair procedures.

View Article and Find Full Text PDF

Six acrylamide resins, derived from l-phenylalanine and l-leucine, are designed for application in digital light processing (DLP) printers to obtain biodegradable thermoset polymers. The acrylamide copolymers are prepared under light irradiation at 405 nm and thermal post-curing processes. Low molecular weight poly(ethylene glycol)diacrylate (PEGDA) and N,N-dimethylacrylamide (DMAM), both liquid resins, are used as co-monomers and diluents for the amino acid-derived acrylamide solubilization.

View Article and Find Full Text PDF

Virtually, all implantable medical devices are susceptible to infection. As the main healthcare issue concerning implantable devices is the elevated risk of infection, different strategies based on the coating or functionalization of biomedical devices with antiseptic agents or antibiotics are proposed. In this work, an alternative approach is presented, which consists of the functionalization of implantable medical devices with sensors capable of detecting infection at very early stages through continuous monitoring of the bacteria metabolism.

View Article and Find Full Text PDF

This work presents a novel nanoparticle-based thermosensor implant able to reveal the precise temperature variations along the polymer filaments, as it contracts and expands due to changes in the macroscale local temperature. The multimodal device is able to trace the position and the temperature of a polypropylene mesh, employed in abdominal hernia repair, by combining plasmon resonance and Raman spectroscopy with hydrogel responsive system. The novelty relies on the attachment of the biocompatible nanoparticles, based on gold stabilized by a chitosan-shell, already charged with the Raman reporter (RaR) molecules, to the robust prosthesis, without the need of chemical linkers.

View Article and Find Full Text PDF

Isotactic polypropylene (i-PP) nonabsorbable surgical meshes are modified by incorporating a conducting polymer (CP) layer to detect the adhesion and growth of bacteria by sensing the oxidation of nicotinamide adenine dinucleotide (NADH), a metabolite produced by the respiration reactions of such microorganisms, to NAD+. A three-step process is used for such incorporation: (1) treat pristine meshes with low-pressure O plasma; (2) functionalize the surface with CP nanoparticles; and (3) coat with a homogeneous layer of electropolymerized CP using the nanoparticles introduced in (2) as polymerization nuclei. The modified meshes are stable and easy to handle and also show good electrochemical response.

View Article and Find Full Text PDF

This work aimed at the antimicrobial functionalization of 3D-printed polymer-infiltrated biomimetic ceramic networks (PICN). The antimicrobial properties of the polymer-ceramic composites were achieved by coating them with human- and environmentally safe silver nanoparticles trapped in a phenolated lignin matrix (Ag@PL NPs). Lignin was enzymatically phenolated and used as a biobased reducing agent to obtain stable Ag@PL NPs, which were then formulated in a silane (γ-MPS) solution and deposited to the PICN surface.

View Article and Find Full Text PDF

Polypropylene (PP) surgical meshes, with different knitted architectures, were chemically functionalized with gold nanoparticles (AuNPs) and 4-mercaptothiazole (4-MB) to transform their fibers into a surface enhanced Raman scattering (SERS) detectable plastic material. The application of a thin layer of poly[-isopropylacrylamide---methylene bis(acrylamide)] (PNIPAAm--MBA) graft copolymer, covalently polymerized to the mesh-gold substrate, caused the conversion of the inert plastic into a thermoresponsive material, resulting in the first PP implantable mesh with both SERS and temperature stimulus responses. AuNPs were homogeneously distributed over the PP yarns, offering a clear SERS recognition together with higher PNIPAAm lower critical solution temperature (LCST ∼ 37 °C) than without the metallic particles (LCST ∼ 32 °C).

View Article and Find Full Text PDF

Polydopamine-ethylene glycol dimethacrylate copolymer is a biocompatible coating with cell adhesion promotion and antibiofilm properties. This copolymer has been successfully applied on metallic implants, such as stainless steel and titanium implants, using several deposition techniques (. layer-by-layer, silane activation, chemical vapor deposition, or liquid-assisted plasma polymerization).

View Article and Find Full Text PDF

In the area of coating development, it is extremely difficult to find a substitute for bisphenol A diglycidyl ether (DGEBA), the classical petroleum-based raw material used for the formulation of epoxy thermosets. This epoxy resin offers fast curing reaction with several hardeners and the best thermal and chemical resistance properties for applications in coatings and adhesive technologies. In this work, a new biobased epoxy, derived from poly(limonene carbonate) oxide (PLCO), was combined with polyetheramine and polyamineamide curing agents, offering a spectrum of thermal and mechanical properties, superior to DGEBA-based thermosets.

View Article and Find Full Text PDF

Biobased epoxy-derived raw materials will be essential for future coating and adhesive designs in industry. Here, a facile approach is reported towards the incorporation of limonene into an epoxy-functionalized polycarbonate and its crosslinking with a polyamine curing agent to obtain a thermoset material. For the first time, a solvent-borne adhesive with excellent film-forming, mechanical and adhesion strength properties is described.

View Article and Find Full Text PDF

The aim of this work was to prepare and characterize polymer-ceramic composite material for dental applications, which must resist fracture and wear under extreme forces. It must also be compatible with the hostile environment of the oral cavity. The most common restorative and biocompatible copolymer, 2,2-bis(p-(2'-2-hydroxy-3'-methacryloxypropoxy)phenyl)propane and triethyleneglycol dimethacrylate, was combined with 3D-printed yttria-stabilized tetragonal zirconia scaffolds with a 50% infill.

View Article and Find Full Text PDF

Rapid detection of bacterial presence on implantable medical devices is essential to prevent biofilm formation, which consists of densely packed bacteria colonies able to withstand antibiotic-mediated killing. In this work, a smart approach is presented to integrate electrochemical sensors for detecting bacterial infections in biomedical implants made of isotactic polypropylene (i-PP) using chemical assembly. The electrochemical detection is based on the capacity of conducting polymers (CPs) to detect extracellular nicotinamide adenine dinucleotide (NADH) released from cellular respiration of bacteria, which allows distinguishing prokaryotic from eukaryotic cells.

View Article and Find Full Text PDF

Herein, the influence of the substrate in the formation of zirconium oxide monolayer, from an aqueous hexafluorozirconic acid solution, by chemical conversion and by electro-assisted deposition, has been approached. The nanoscale dimensions of the ZrO film is affected by the substrate nature and roughness. This study evidenced that the mechanism of Zr-EAD is dependent on the potential applied and on the substrate composition, whereas conversion coating is uniquely dependent on the adsorption reaction time.

View Article and Find Full Text PDF

Development of smart functionalized materials for tissue engineering has attracted significant attention in recent years. In this work we have functionalized a free-standing film of isotactic polypropylene (i-PP), a synthetic polymer that is typically used for biomedical applications (e.g.

View Article and Find Full Text PDF

Herein, a versatile bilayer system, composed by a polypropylene (PP) mesh and a covalently bonded poly(N-isopropylacrylamide) (PNIPAAm) hydrogel, is reported. The cell adhesion mechanism was successfully modulated by controlling the architecture of the hydrogel in terms of duration of PNIPAAm grafting time, crosslinker content, and temperature of material exposure in PBS solutions (below and above the LCST of PNIPAAm). The best in vitro results with fibroblast (COS-1) and epithelial (MCF-7) cells was obtained with a mesh modified with a porous iPP-g-PNIPAAm bilayer system, prepared via PNIPAAm grafting for 2 h at the lowest N,N'-methylene bis(acrylamide) (MBA) concentration (1 mM).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created and analyzed biodegradable fibrous scaffolds made from polyaniline (PAni) and poly(lactic acid) (PLA), with some variations including poly(ethylene glycol) (PEG) to enhance properties.
  • Characterization techniques like Fourier-transform infrared and micro-Raman spectroscopies confirmed the structure and morphology of the fibers, showcasing how PEG improved packing and electrical conductivity while modifying thermal properties.
  • Although PAni showed high cytotoxicity, the combination of PLA and PAni in the scaffolds allowed for improved cell adhesion and proliferation, with coaxial electrospinning techniques further enhancing biocompatibility, suggesting potential for cardiac tissue engineering applications.
View Article and Find Full Text PDF

The electro-chemo-mechanical response of robust and flexible free-standing films made of three nanoperforated poly(lactic acid) (pPLA) layers separated by two anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layers has been demonstrated. The mechanical and electrochemical properties of these films, which are provided by pPLA and PEDOT, respectively, have been studied by nanoindentation, cyclic voltammetry, and galvanostatic charge-discharge assays. The unprecedented combination of properties obtained for this system is appropriated for its utilization as a Faradaic motor, also named artificial muscle.

View Article and Find Full Text PDF

In this study, a commercial and fully flexible monofilament mesh has been used for the deposition of a thermosensitive hydrogel, generated by graft copolymerization of N-isopropylacrylamide (NIPAAm) and N,N'-methylene bis(acrylamide) (MBA) monomers. The mechanism of adhesion and graft copolymerization have been elucidated combining micro- and standard spectroscopy techniques such as Raman spectroscopy, FTIR spectroscopy and XPS, before and after the activation of the polypropylene (PP) fibre surface by using oxygen-plasma. The good covalent interactions among NIPAAm monomers and PP fibres, and the hydrogel chain growth in such flexible bidimensional structures, were demonstrated.

View Article and Find Full Text PDF

In this work, we report the design and fabrication of a dual-function integrated system to monitor, in real time, the release of previously loaded 2-methyl-1,4-naphthoquinone (MeNQ), also named vitamin K3. The newly developed system consists of poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles, which were embedded into a poly-γ-glutamic acid (γ-PGA) biohydrogel during the gelling reaction between the biopolymer chains and the cross-linker, cystamine. After this, agglomerates of PEDOT nanoparticles homogeneously dispersed inside the biohydrogel were used as polymerization nuclei for the in situ anodic synthesis of poly(hydroxymethyl-3,4-ethylenedioxythiophene) in aqueous solution.

View Article and Find Full Text PDF