Diabetic foot ulcers (DFUs) present significant challenges due to their associated amputation rates, mortality, treatment complexity and excessive costs. Our earlier work introduced a wound surgical integrated treatment (WSIT) for DFUs, yielding promising outcomes. This study focuses on a specific WSIT protocol employing antibiotic-loaded bone cement (ALBC) in the first Stage, and free vastus lateralis muscle-sparing (VLMS) flaps and split-thickness skin grafts (STSGs) in the second stage to repair non-weight-bearing DFUs.
View Article and Find Full Text PDFThe optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Consistent with this endeavor, we used regenerated silk fibroin (SF) from to produce a novel compound scaffold by welding a 3D carded/hydroentangled SF-microfiber-based nonwoven layer (C/H-3D-SFnw; to support dermis engineering) to an electrospun 2D SF nanofiber layer (ESFN; a basal lamina surrogate).
View Article and Find Full Text PDFIncreasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation.
View Article and Find Full Text PDFThe rapid advancement of nanomedicine and nanoparticle (NP) materials presents novel solutions potentially capable of revolutionizing health care by improving efficacy, bioavailability, drug targeting, and safety. NPs are intriguing when considering medical applications because of their essential and unique qualities, including a significantly higher surface to mass ratio, quantum properties, and the potential to adsorb and transport drugs and other compounds. However, NPs must overcome or navigate several biological barriers of the human body to successfully deliver drugs at precise locations.
View Article and Find Full Text PDFHuman neuroinflammatory and neurodegenerative diseases, whose prevalence keeps rising, are still unsolved pathobiological/therapeutical problems. Among others, recent etiology hypotheses stressed as their main driver a chronic neuroinflammation, which is mediated by innate immunity-related protein oligomers: the inflammasomes. A panoply of exogenous and/or endogenous harmful agents activates inflammasomes' assembly, signaling, and IL-1β/IL-18 production and neural cells' pyroptotic death.
View Article and Find Full Text PDFBackground: Skin cutaneous melanoma (SKCM) is the deadliest skin cancer and has the most rapidly increasing incidences among all cancer types. Previous research elucidated that melanoma can only be successfully treated with surgical abscission in the early stage. Therefore, reliable and specific biomarkers are crucial to melanoma diagnosis since it often looks like nevi in the clinical manifestations.
View Article and Find Full Text PDFBackground: Our earlier works showed the quick vascularization of mouse skin grafted 3D silk fibroin nonwoven scaffolds (3D-SFnws) and the release of exosomes enriched in angiogenic/growth factors (AGFs) from in vitro 3D-SFnws-stuck human dermal fibroblasts (HDFs). Here, we explored whether coronary artery adult human smooth muscle cells (AHSMCs) also release AGFs-enriched exosomes when cultured on 3D-SFnws in vitro.
Methods: Media with exosome-depleted FBS served for AHSMCs and human endothelial cells (HECs) cultures on 3D-SFnws or polystyrene.
Background: Rapid diagnosis of microbes in the burn wound is a big challenge in the medical field. Traditional biochemical detection techniques take hours or days to identify the species of contaminating and drug-resistant microbes. Near-infrared spectroscopy (NIRS) is evaluated to address the need for a fast and sensitive method for the detection of bacterial contamination in liquids.
View Article and Find Full Text PDFThe accurate and objective evaluation of burn depth is a significant challenge in burn wound care. Herein, we used near infrared spectroscopy (NIRS) technology to measure the different depth of thermal burns in porcine models. Based on the intensity of the spectral signals and the diffuse reflection theory, we extracted the optical parameters involved in functional (total hemoglobin and water content) and structural (tissue scattered size and scattered particles) features that reflect the changes in burn depth.
View Article and Find Full Text PDFBackground: silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3D-SFnws) implanted into mouse subcutaneous tissue were promptly vascularized via undefined molecular mechanisms. The present study used nontumorigenic adult human dermal fibroblasts (HDFs) adhering to a third type of 3D-SFnws to assess whether HDFs release exosomes whose contents promote neoangiogenesis.
View Article and Find Full Text PDFFibrillar aggregates and soluble oligomers of both Amyloid-β peptides (Aβs) and hyperphosphorylated Tau proteins (p-Tau-es), as well as a chronic neuroinflammation are the main drivers causing progressive neuronal losses and dementia in Alzheimer's disease (AD). However, the underlying pathogenetic mechanisms are still much disputed. Several endogenous neurotoxic ligands, including Aβs, and/or p-Tau-es activate innate immunity-related danger-sensing/pattern recognition receptors (PPRs) thereby advancing AD's neuroinflammation and progression.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2020
Chronic wounds caused by infections, diabetes, and radiation exposures are becoming a worldwide growing medical burden. Recent progress highlighted the physical signals determining stem cell fates and bacterial resistance, which holds potential to achieve a better wound regeneration . Nanoparticles (NPs) would benefit chronic wound healing.
View Article and Find Full Text PDFAvailable evidence shows that human cortical neurons' and astrocytes' calcium-sensing receptors (CaSRs) bind Amyloid-beta (Aβ) oligomers triggering the overproduction/oversecretion of several Alzheimer's disease (AD) neurotoxinseffects calcilytics suppress. We asked whether AβCaSR signaling might also play a direct pro-neuroinflammatory role in AD. Cortical nontumorigenic adult human astrocytes (NAHAs) in vitro were untreated (controls) or treated with AÎ²ï€ Â±ï€ NPS 2143 (a calcilytic) and any proinflammatory agent in their protein lysates and growth media assayed via antibody arrays, enzyme-linked immunosorbent assays (ELISAs), and immunoblots.
View Article and Find Full Text PDFCutaneous regeneration at the wound site involves several intricate and dynamic processes which require a series of coordinated interactions implicating various cell types, growth factors, extracellular matrix (ECM), nerves, and blood vessels. Mesenchymal stromal cells (MSCs) take part in all the skin wound healing stages playing active and beneficial roles in animal models and humans. Exosomes, which are among the key products MSCs release, mimic the effects of parental MSCs.
View Article and Find Full Text PDFSilk fibroin (SF) is an eligible biomaterial for the development of small caliber vascular grafts for substitution, repair, and regeneration of blood vessels. This study presents the properties of a newly designed multi-layered SF tubular scaffold for vascular grafting (SilkGraf). The wall architecture consists of two electrospun layers (inner and outer) and an intermediate textile layer.
View Article and Find Full Text PDFAlzheimer's disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96-98% of cases) neurodegenerative dementia in aged people. AD's neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABARs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD.
View Article and Find Full Text PDFObjective: Pulmonary autograft root dilatation is the major long-term complication after Ross procedure and the leading cause for reoperation. However, the mechanisms underlying dilatation remain to be elucidated. This study analyzed the proteomic changes seen in the dilated pulmonary autograft compared with normal pulmonary artery and aorta tissues.
View Article and Find Full Text PDFHigh oncogenic risk human papillomaviruses (HR-HPVs) promote cervical carcinoma development, the fourth most common feminine cancer. A slow oncodevelopmental phase-defined histopathologically as Cervical Intraepithelial Neoplasia (CIN) grades 1-3, or cytologically as Low- or High-grade Squamous Intraepithelial Lesions (LSIL or HSIL)-precedes the malignancy. Cervical carcinoma screenings through HR-HPV genotyping and Pap smears are regularly performed in Western countries.
View Article and Find Full Text PDFBackground Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. Here, we focused on morphologic and molecular changes of the extracellular matrix of the tunica media of SNSTAAs. Design Single centre design.
View Article and Find Full Text PDFBackground Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. The study aimed at defining the peculiar morphologic and molecular changes occurring in the media layer of SNSTAAs. Design This study was based on a single centre design.
View Article and Find Full Text PDFUnderstanding the pathophysiology of Alzheimer's disease (AD) in the principal human neural cells is necessary for finding therapeutics for this illness. To help do this, we have been using freshly cultured functionally normal cerebral cortical adult human astrocytes (NAHAs) and postnatal neurons. The findings show that amyloid-β oligomers (Aβ-os) binding to calcium-sensing receptors (CaSRs) on NAHAs and neuron surfaces trigger signals capable of driving AD pathogenesis.
View Article and Find Full Text PDF