Publications by authors named "Armando de Menezes-Neto"

Free living amoeba of the genus Acanthamoeba are opportunist protozoan involved in corneal, systemic, and encephalic infections in humans. Most of the mechanisms underlying intraspecies variations and pathogenicity are still unknown. Recently, the release of extracellular vesicles (EVs) by Acanthamoeba was reported.

View Article and Find Full Text PDF
Article Synopsis
  • * Pernambuco state, located in the Northeast and significantly affected, had limited genomic data available, prompting a study that sequenced 101 SARS-CoV-2 strains from local patients with Covid-19.
  • * The analysis showed that all strains belonged to the B lineage, predominantly the B.1.1 variant, indicating multiple viral introductions from Europe and the presence of local clades, suggesting extensive community spread across different municipalities.
View Article and Find Full Text PDF

infection causes considerable human morbidity and may develop into a deadly visceral form in endemic regions. The parasite infects macrophages where they can replicate intracellularly. Furthermore, they modulate host immune responses by using virulence factors (lipophosphoglycan, glycoprotein-63, and others) that promote survival inside the cells.

View Article and Find Full Text PDF

Reticulocyte-derived exosomes (Rex), extracellular vesicles of endocytic origin, were initially discovered as a cargo-disposal mechanism of obsolete proteins in the maturation of reticulocytes into erythrocytes. In this work, we present the first mass spectrometry-based proteomics of human Rex (HuRex). HuRex were isolated from cultures of human reticulocyte-enriched cord blood using different culture conditions and exosome isolation methods.

View Article and Find Full Text PDF

Reticulocyte-derived exosomes () are 30-100 nm membrane vesicles of endocytic origin released during the maturation of reticulocytes to erythrocytes upon fusion of multivesicular bodies with the plasma membrane. Combination of CpG-ODN with rex obtained from BALB/c mice infected with the reticulocyte-prone non-lethal 17X malaria strain (), had been shown to induce survival and long lasting protection. Here, we show that splenectomized mice are not protected upon +CpG inmunizations and that protection is restored upon passive transfer of splenocytes obtained from animals immunized with +CpG.

View Article and Find Full Text PDF

Plasma-derived vesicles hold a promising potential for use in biomedical applications. Two major challenges, however, hinder their implementation into translational tools: (a) the incomplete characterization of the protein composition of plasma-derived vesicles, in the size range of exosomes, as mass spectrometric analysis of plasma sub-components is recognizably troublesome and (b) the limited reach of vesicle-based studies in settings where the infrastructural demand of ultracentrifugation, the most widely used isolation/purification methodology, is not available. In this study, we have addressed both challenges by carrying-out mass spectrometry (MS) analyses of plasma-derived vesicles, in the size range of exosomes, from healthy donors obtained by 2 alternative methodologies: size-exclusion chromatography (SEC) on sepharose columns and Exo-Spin™.

View Article and Find Full Text PDF

Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions.

View Article and Find Full Text PDF

Genomic, transcriptomic, proteomic, and metabolomic projects exemplify the "omics" era, and have significantly expanded available data for biomedical research. Recently, next generation sequencing technologies have even more greatly expanded DNA and RNA information. The present challenge is mining this information to obtain meaningful data such as that identifying novel drug targets and vaccine candidates.

View Article and Find Full Text PDF

Background: Signal peptide is one of the most important motifs involved in protein trafficking and it ultimately influences protein function. Considering the expected functional conservation among orthologs it was hypothesized that divergence in signal peptides within orthologous groups is mainly due to N-terminal protein sequence misannotation. Thus, discrepancies in signal peptide prediction of orthologous proteins were used to identify misannotated proteins in five Plasmodium species.

View Article and Find Full Text PDF