Publications by authors named "Armando Silva-Cruz"

Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC modulation of LTP or its relation to hippocampal GABAergic circuit maturation.

View Article and Find Full Text PDF

Non-epileptic seizures are identified as a common epileptogenic trigger. Early metaplasticity following seizures may contribute to epileptogenesis by abnormally altering synaptic strength and homeostatic plasticity. We now studied how epileptiform activity (EA) triggers early changes in CA1 long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in rat hippocampal slices and the involvement of lipid rafts in these early metaplasticity events.

View Article and Find Full Text PDF

Long-term potentiation (LTP) is a highly studied cellular process, yet determining the transduction and gamma aminobutyric acid (GABAergic) pathways that are the essential versus modulatory for LTP elicited by theta burst stimulation (TBS) in the hippocampal Cornu Ammonis 1 (CA1) area is still elusive, due to the use of different TBS intensities, patterns or different rodent/cellular models. We now characterised the developmental maturation and the transduction and GABAergic pathways required for mild TBS-induced LTP in hippocampal CA1 area in male rats. LTP induced by TBS (5x4) (five bursts of four pulses delivered at 100 Hz) lasted for up to 3 h and was increasingly larger from weaning to adulthood.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CBR) is widely distributed in the central nervous system, in excitatory and inhibitory neurons, and in astrocytes. CBR agonists impair cognition and prevent long-term potentiation (LTP) of synaptic transmission, but the influence of endogenously formed cannabinoids (eCBs) on hippocampal LTP remains ambiguous. Based on the knowledge that eCBs are released upon high frequency neuronal firing, we hypothesized that the influence of eCBs upon LTP could change according to the paradigm of LTP induction.

View Article and Find Full Text PDF