Publications by authors named "Armando D Urbina"

The following laboratory procedure provides students with hands-on experience in nanomaterial chemistry and characterization. This three-day protocol is easy to follow for undergraduates with basic chemistry or materials science backgrounds and is suitable for inclusion in upper-division courses in inorganic chemistry or materials science. Students use air-free chemistry procedures to synthesize and separate iron oxide magnetic nanoparticles and subsequently modify the nanoparticle surface by using a chemical stripping agent.

View Article and Find Full Text PDF

The purpose of this work is to clarify the mechanism of piezoresistance in a class of ultra-sensitive strain gauges based on metallic films on 2D substrates ("2D/M" films). The metals used are gold or palladium deposited as ultrathin films (≤16 nm). These films transition from a regime of subcontiguous growth to a percolated morphology with increasing nominal thickness.

View Article and Find Full Text PDF

This article describes the design of piezoresistive thin-film sensors based on single-layer graphene decorated with metallic nanoislands. The defining characteristic of these composite thin films is that they can be engineered to exhibit a temperature coefficient of resistance (TCR) that is close to zero. A mechanical sensor with this property is stable against temperature fluctuations of the type encountered during operations in the real world, for example, in a wearable sensor.

View Article and Find Full Text PDF

Thin-film optical strain sensors have the ability to map small deformations with spatial and temporal resolution and do not require electrical interrogation. This paper describes the use of graphene decorated with metallic nanoislands for sensing of tensile deformations of less than 0.04% with a resolution of less than 0.

View Article and Find Full Text PDF