Publications by authors named "Arman Aghaee"

Background: Physics-informed neural networks (PINNs) are increasingly being used to model cardiovascular blood flow. The accuracy of PINNs is dependent on flow complexity and could deteriorate in the presence of highly-dynamical blood flow conditions, but the extent of this relationship is currently unknown. Therefore, we investigated the accuracy and performance of PINNs under a range of blood flow conditions, from laminar to turbulent-like flows.

View Article and Find Full Text PDF

Background And Objectives: Physics-informed neural networks (PINNs) can be used to inversely model complex physical systems by encoding the governing partial differential equations and training data into the neural network. However, neural networks are known to be biased towards learning less complex functions, called spectral bias. This has important implications in modeling cardiovascular flows, where spatial frequencies can vary substantially across anatomies and pathologies (e.

View Article and Find Full Text PDF